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ABSTRACT 

Problems of missing data are pervasive in social science research. Because of this, 

researchers have begun to use techniques after data collection to deal with missing data, 

including traditional methods (i.e. listwise deletion, pairwise deletion, and single 

imputation procedures) and modern procedures (i.e. multiple imputation and full 

information maximum likelihood). In the past, several organizations and researchers have 

warned that traditional missing data techniques (MDTs) can introduce bias into parameter 

estimates, and can result in a loss of statistical power (e.g., Becker & Powers, 2001; 

Wilkinson & the APA Task Force on Statistical Inference, 1999). However, previous 

research has shown that using a traditional method does not necessarily reduce statistical 

power or bias parameter estimates (Roth & Swizer, 1995). Research using traditional 

regression techniques has shown that sample size, percent of missing data, and missing 

data mechanism are key characteristics in determining under what conditions each MDT 

should be used. To further complicate matters, the multilevel modeling (MLM) literature 

has largely ignored the impact of missing data.  Thus, it is not known if the results from 

single-level missing data research apply to hierarchical data.   

The present simulation study compare the performance of multilevel multiple 

imputation (MLMI) and listwise deletion in the context of linear two-level organizational 

models with continuous predictors. Design factors of interest included missing data 

technique, missing data mechanism, level-1 sample size, level-2 sample size, level-1 

percent of missing data, and level-2 percent of missing data totaling 
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2,000 conditions. Design factors were evaluated on four outcomes, including bias, Type I 

error, statistical power, and confidence interval (C.I.) coverage. Results from this study 

showed that listwise deletion performed well for bias, level-2 Type I error rates, level-1 

power, and C.I. coverage. Listwise deletion did have minor problems with Type I error 

rates at level-1, and power at level-2. MLMI performed well for level-2 Type I error 

rates, level-1 power, and level-2 C.I. coverage, but had minor issues with level-1 Type I 

error rates and level-2 power, and major issues with bias at both levels, and C.I. coverage 

at level-1. Recommendations for applied researchers based upon these results are 

discussed.  
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CHAPTER I 

Introduction 

Often in education, public health, sociology, and public policy, researchers 

encounter situations in which data are hierarchical or nested.  For example, students can 

be nested within classrooms or schools and patients can be nested within hospitals. 

Because students (level-1) within a school (level-2) are more alike than students in 

different schools, these nested data structures need to be analyzed differently due to the 

lack of independence between the level-1 units. Specifically, when systematic differences 

exist between higher level units in data organized hierarchically, a correlation among 

lower-level units within each higher level unit can arise, thus violating the assumption of 

independence (Snijders & Bosker, 1999). Ignoring the nesting of data can impact 

estimated variances and the available power to detect treatment or covariate effects 

(Donner & Klar, 2000; Julian, 2001; Moerbeek, 2004; Murray, 1998; Shadish, Cook & 

Campbell, 2002), can inflate Type I error rates (Wampold & Serlin, 2000), and can lead 

to substantive errors in interpreting the results of statistical significance tests (Goldstein, 

2003; Nich & Caroll, 1997).  

Given the importance of accounting for dependencies in nested data, a class of 

models known broadly as multilevel models (MLM) has been developed. Conceptually, 

MLMs are an extension of regression where each level-2 unit has its own unique 

regression equation. Thus, instead of representing data with only one regression equation, 
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researchers can examine regression lines for each level-2 unit and how slopes and 

intercepts vary across the different units. This class of models requires additional 

assumptions, estimation of a greater number of parameters, and more complex 

specifications and model fit assessments than in traditional single-level methods 

(Goldstein, 1987; 2003; Longford, 1993; Raudenbush & Bryk, 1986; 2002; Snijders & 

Bosker, 1999). 

Similar to traditional linear regression techniques, linear multilevel models can 

specify dependent variables as a function of a linear combination of both categorical and 

continuous variables. Estimates of the relationships between predictors and the dependent 

variable are termed fixed effects and are interpreted similarly to single level regression 

coefficients (i.e. for every one unit change in the predictor the predicted value of the 

dependent variable changes equal to the slope value associated with the predictor). 

However, unlike traditional regression techniques, multilevel models allow for 

specification of units at different levels. For example if children are nested within 

schools, multilevel modeling specifies children at level-1 and schools at level-2. This can 

also be extended to have more than two levels (e.g. children nested within schools nested 

within districts). Specification of these levels allows for decomposition of variance in 

outcomes and predictors to be within-unit (within each distinct higher level unit) and 

between-unit (across the distinct higher-level units). When predictors exist at the lowest 

and highest levels of the hierarchy, researchers use multilevel models to specify cross-

level interactions to investigate how higher level predictors influence the estimates of 

lower-level predictors. Additionally, researchers can understand how the performances of 

lower level variables fluctuate among higher level units by modeling random effects. 
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Specifying a variable as having a random effect informs researchers how slopes and 

intercepts vary across the different units. 

Figure 1.1 shows a conceptual illustration of random intercepts and slopes. 

Ignoring color, all of the data points are represented by the black regression line, which is 

an example of how these data would be represented using single-level regression. A 

MLM with random slopes and intercepts allows researchers to specify a unique group 

effect through random intercepts and random slopes, thus allowing each school to have 

its own regression line with its own intercept and own slope. Figure 1.1 shows three 

schools where school A is represented by the blue data points, school B the red data 

points, and school C the green data points. By allowing each school to have its own slope 

and intercept, we can see that School A, on average, has lower overall performance on 

the outcome, but the slope associated with the predictor is stronger compared to the other 

schools. School C, on the other hand, has the highest overall performance but the weakest 

slope. Lastly, School B has average achievement slightly lower than School C, but has a 

stronger slope, but not as strong as school A.  

Estimates of variability among random intercepts and slopes are known as 

variance components, and provide a description of the distributions of the random 

intercept and slope effects, and their potential covariance (Agresti, Booth, Hobert & 

Caffo, 2000). The within-unit variance captures the error in prediction among units 

within a particular group (at level-1), where each level-1 unit deviates from the overall 

level-2 mean for the model. The between-unit variance captures the amount of variability 

between the higher-level units. In the case of a two-level model examining children 

nested within schools, the within-unit variance captures how much a child deviates from 
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the overall mean of all children in the same school. The between-unit variance captures 

the extent to which schools vary from each other.   The ratio of the between-group 

variance to total variance (i.e. the combination of between-group and within-group 

variance) is known as the intra-class correlation coefficient (ICC). The ICC provides a 

metric for the degree of correlation or dependence among lower-level units (Bloom, 

2005; Kreft & De Leeuw, 1998; Snijders & Bosker, 1999). The ICC is scaled 0 to 1 with 

larger values providing more evidence that multilevel modeling should be used. 

 

Figure 1.1 Conceptual Illustration of Random Intercepts and Random Slopes. 

 

Due to the fact that MLM involves an increased number of parameters that needs 

to be estimated, the model-building process can become complicated. Although there are 

many ways to build MLMs, here I provide a relatively simple and straightforward method 

to find the most parsimonious process to identify the best fitting model for a two-level 

model: 
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1. The null model is estimated in order to calculate the ICC. The null 

model is estimated by specifying the outcome of interest as the 

dependent variable and a random intercept with no predictors. The 

within-and between-group variance is then used to calculate the ICC 

(i.e. the ratio of the between-group variance to total variance).  

2.  The next step is to expand the null model by adding the level-1 fixed 

effects. In this step, the results indicate the relationship between the 

level-1 fixed effects and the outcome. Examination of the fit indices, 

including Akaike’s Information Criteria and Bayesian Information 

Criterion in addition to the Likelihood Ratio Test, can inform the 

researcher if the expanded model fits better than the null model.  

3. Once the expanded model has been estimated and deemed to be a better 

fitting model than the null model, the researcher can add random slopes 

for every level-1 predictor. This will expand the results from Step 2 and 

reveal if the relationships between level-1 predictors and the outcome 

vary between the level-2 units. From this point fit indices will then be 

explored to verify that the random slopes need to be included in the 

model. 

4. Once the model in Step 3 is estimated, the level-2 fixed effects are 

added to the model. This will indicate the average relationship between 

level-2 predictors and the outcome, while controlling for level-1 

predictors. 
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It is important to point out that this model building procedure is general in nature. 

Depending on the fit indices, intermediate models may need to be estimated (e.g. some 

level-1 slopes may vary across level-2 and some may not and intermediate models may 

be estimated to determine out which ones should be allowed to vary). Also note that the 

model building procedure becomes more complex when more levels are added and when 

interactions are present (i.e. more steps are needed).  

Because multilevel models consist of both fixed and random effects, there are 

assumptions associated with both of these effects. The assumptions related to bias in the 

fixed effects are similar to assumptions associated with traditional regression models; 

however the assumptions occur at multiple levels. These assumptions are based on the 

relationship of fixed effects to residual terms in the model and include: 

1. Level-1 predictors are independent of level-1 residuals. 

2. Level-2 predictors are independent of every level-2 residual. 

3. Predictors at each level are not correlated with residuals at other levels. 

The assumptions related to the random effects determine the accuracy of hypothesis tests 

and confidence intervals and include: 

4. Each level-1 residual is independent and normally distributed with a mean 

of 0 and variance σ2 for every level-1 unit within each level-2 unit. 

5. Level-2 errors are multivariate normal with a mean of 0 and a variance to 

be estimated and potential covariance among the level-2 errors. The level-

2 random error vectors are also independent from each other.  

6. Level-1 and level-2 errors are independent. 
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Assumption 4 is similar to traditional regression, however in multilevel modeling the 

residuals are independent within a higher-level unit instead of across the entire data set. 

Assumptions 5 and 6 are unique to multilevel modeling and are due to the nested data and 

specification of multiple levels and residuals associated with multiple levels.  

Two-Level Linear Multilevel Models 

Raudenbush and Bryk (2002) presented an example of a two-level linear model 

with random intercepts and slopes where students (level-1) are nested within schools 

(level-2) that models data collected from the 1982 High School and Beyond Survey 

(HSB).  At level-1 a student outcome variable is regressed onto a single student-level 

predictor. In Raduenbush and Bryk’s (2002) example, the outcome was score on a math 

assessment and the student-level predictor was student SES, represented by the following 

equation: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗 (𝑆𝐸𝑆)𝑖𝑗 + 𝑟𝑖𝑗        𝑟𝑖𝑗~ 𝑁(0, 𝜎2) 

where Yij represents the score on the math assessment for student i in school j, β0j 

represents the average math achievement across all students, β1j represents the 

relationship between student SES and math achievement, and rij represents an individual 

student’s error term. Each school is allowed to have its own intercept and the error (rij) is 

approximately normal with a mean of 0 and a covariance R.  

 At level-2, parameters at level-1 may serve as an outcome variable for level-2 

predictors. Raudenbush and Bryk (2002) show an example where two level-2 predictors 

are used to explain intercepts and slopes, by the following equations: 

𝛽0𝑗 =  𝛾00 + 𝛾01(𝑀𝐸𝐴𝑁 𝑆𝐸𝑆)𝑗 + 𝛾02(𝑆𝐸𝐶𝑇𝑂𝑅)𝑗 + 𝑢0𝑗 
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𝛽1𝑗 =  𝛾10 + 𝛾11(𝑀𝐸𝐴𝑁 𝑆𝐸𝑆)𝑗 + 𝛾12(𝑆𝐸𝐶𝑇𝑂𝑅)𝑗 + 𝑢1𝑗 

In this equation, SECTOR is a dummy coded variable where 1 represents private schools 

and 0 represents public schools and MEAN SES represents the average SES of students 

within a particular school. The equation for β0j represents several main effects. Thus, γ00 

represents the overall mean score for public schools, γ01 is the regression coefficient 

associated with school-level SES, and γ02 is the regression coefficient associated with 

private schools. The equation for β1j represents cross-level interactions between level-1 

and level-2 predictors, where γ10 represents the regression coefficient for SES, γ11 

represents the regression coefficient for the interaction between MEAN SES and student -

level SES, γ12 represents the regression coefficient for the interaction of SES and school 

SECTOR. How these variables interact can be easily seen when the level-1 and level-2 

models are combined into the following equation: 

𝑌𝑖𝑗 =  𝛾00 + 𝛾01(𝑀𝐸𝐴𝑁 𝑆𝐸𝑆)𝑗 + 𝛾02(𝑆𝐸𝐶𝑇𝑂𝑅)𝑗 + 𝛾10(𝑆𝐸𝑆)𝑖𝑗

+ 𝛾11(𝑀𝐸𝐴𝑁 𝑆𝐸𝑆)𝑗(𝑆𝐸𝑆)𝑖𝑗 + 𝛾12(𝑆𝐸𝐶𝑇𝑂𝑅)𝑗(𝑆𝐸𝑆)𝑖𝑗 + 𝑢0𝑗

+ 𝑢1𝑗(𝑆𝐸𝑆)𝑖𝑗 + 𝑟𝑖𝑗 

This equation is arranged such that the fixed effects (in blue) of the model are toward the 

front with the random part of the equation (in green) listed in the middle and the error 

term (in orange) toward the back. Yij represents the score on the math assessment for 

student i in school j, γ00 represents the overall mean score for public schools, γ01 is the 

regression coefficient associated with school-level SES, and γ02 is the regression 

coefficient associated with private schools. γ10 represents the regression coefficient for 

SES, γ11 represents the cross-level interaction between school-level SES and student SES, 
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γ12 represents the school-level cross-level interaction between sector and student SES. 

Thus the fixed effects portion of the model shows that this equation consists of three 

main effects and two cross-level interactions.  

For the random part of the model, the estimates are called variance components. 

For example, multilevel models can have a random intercept (𝑢0𝑗) to indicate that 

intercepts in the lower levels are allowed to vary among higher levels. Additionally, 

researchers can specify random slopes (𝑢1𝑗) through theory or the model building 

process to indicate that slope coefficients for lower level variables fluctuate among higher 

level units. Note in these models level-1 effects are assumed to be unrelated to errors at 

level-2. The variance components (u0j and u1j) are assumed to be multivariate normally 

distributed with means of 0 and covariance matrix: 

𝑉𝑎𝑟 [
𝑢0𝑗

𝑢1𝑗
] = [

𝜏00

𝜏10 𝜏11
] = 𝑻 

where τ00 represents the population variance among the school means, τ11 is the 

population variance among slopes, and τ10 is the population covariance between 

intercepts and slopes.  

As evidenced by Raudenbush and Bryk’s two-level linear model with random 

intercepts and slopes, MLM is an extension of traditional regression techniques with a 

more complicated model building process.  As such, MLMs are susceptible to many of 

the same complications as those introduced in traditional regression techniques, including 

missing data.  Missing data can be even more detrimental in MLMs given the complexity 

of the model.  That is, since data are nested, missingness can occur at both levels 
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influencing the results of the model.  For example, if children are nested within a school, 

complete information has to be gathered from the child (e.g. student achievement) and 

from the school (e.g. percent of students receiving free or reduced lunch).  Given that 

data are collected from both the students and the school it is more likely missing data will 

emerge, influencing the results of the model. 

Statement of the problem 

 Problems of missing data are pervasive in empirical social science research. 

Researchers spend much time and effort devising sampling efforts that represent their 

population of interest. For example, suppose an applied researcher selects 1,000 people 

from their target population and is confident that the sampling technique used is 

representative of the population. If all data are present, researchers can feel fairly 

confident that his or her results are representative. However, if after sampling missing 

data are present on some observations and subsequently get deleted from the analyses, the 

researcher becomes less confident that his or her results actually represent the population 

of interest. Moreover, if observations with missing data are deleted from the sample, 

analyses are often conducted on smaller samples than the initial number of selected cases 

(Allison, 2002), thus decreasing statistical power.  

 There are many causes of missing data. Sometimes people refuse to answer 

questions in surveys, people overlook survey items, interviewers may neglect to ask some 

questions, respondents may indicate  that they do not know the answer to some questions, 

people may drop out of research studies completed longitudinally, etc.  Whatever the 

reason for missing data, such data are a notable problem since nearly all standard 
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statistical methods presume that information is available on every case for all variables 

included in the analyses. Because of this, investigators spend a lot of time, money, and 

effort in order to minimize the occurrence of incomplete data or non-response among 

respondents (Mason, 1999).  

Even after rigorous methods for minimizing missing data are used, it is unlikely 

that researchers have complete data (Allison, 2002). Because of this, researchers have 

begun to use techniques after data collection to deal with missing data, including the 

more traditional methods (i.e. listwise deletion, pairwise deletion, and single imputation 

procedures) and two modern procedures that are typically recommended by researchers 

(i.e. multiple imputation and full information maximum likelihood [FIML]; Schafer & 

Graham, 2002). While there are pros and cons to both traditional and modern methods, 

this section provides a brief overview of the most common missing data techniques 

(MDTs) in the literature, whereas a more thorough explanation of each MDT is discussed 

in Chapter 2.  

 Listwise Deletion. With this method, any case that has missing data for any 

variable of interest in a given study is discarded from the analysis. The primary reason 

that this method is frequently used is due to convenience. This method is commonly 

available in software packages such as SAS and SPSS and has no subjective decision 

making required to implement the procedure. Ultimately, if data are incomplete, that case 

(or in most social science research, that person) is removed from the analysis.  

 Pairwise Deletion. This method is similar to listwise in that incomplete cases are 

removed from analyses, however with this method, researchers attempt to use as much 
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data as possible by eliminating cases on an analysis-by-analysis basis. Because of this, 

each analysis has a different sample size.  

 Single Imputation Methods. This is an umbrella term for procedures where one 

replacement value is filled in for each missing data point prior to analysis. Examples 

include mean imputation, regression imputation, stochastic regression imputation, and 

hot-deck imputation.  This method results in all observations having complete data, thus, 

no one is removed from the analyses.  

 Multiple Imputation (MI). Multiple imputation (MI) fills in missing values prior 

to analysis. Conceptually this procedure involves three stages to generate a complete data 

set—the imputation phase, the analysis phase, and the pooling phase. The imputation 

phase creates multiple datasets (the number of which is set by the researcher) of the data 

which contains different estimates of the missing values using Bayesian estimation 

principles. The analysis phase analyzes the new, filled in data sets from the imputation 

phase, and the pooling phase combines everything into a single set of results (Enders, 

2010; Rubin 1987). 

Full-information Maximum Likelihood (FIML). Maximum likelihood 

estimation is an iterative process that repeatedly uses different values for population 

parameter values until it finds estimates that most likely produced the observed data, by 

repeating the log-likelihood computations for each of the different values (Enders, 2010). 

The goal with this procedure is to find the combination of estimates that best fits the data, 

yet does not actually fill in the missing values. 
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In 1999 The American Psychological Association Task Force on Statistical 

Inference explicitly warned against the use of traditional MDTs, such as listwise and 

pairwise deletion. They stated, 

Special issues arise in modeling when we have missing data. The two popular 

methods for dealing with missing data that are found in basic statistics 

packages—listwise and pairwise deletion of missing values—are among the worst 

methods available for practical applications.  (Wilkinson & the APA Task Force 

on Statistical Inference, 1999, p.598) 

 

This statement was published after several research studies showed that the use of 

traditional MDTs can introduce bias into parameter estimates derived from a statistical 

model (Becker & Powers, 2001; Becker & Walstaf, 1990; Rubin, 1987) and can result in 

a loss of information and statistical power (Anderson, Basilevsky, & Hum, 1983; Kim & 

Curry, 1977) when strict assumptions are not met.  

Although The American Psychological Association Task Force on Statistical 

Inference explicitly warned against the use of traditional MDTs, previous research has 

shown that using a traditional method does not necessarily reduce statistical power or 

bias parameter estimates. Research using traditional regression techniques has shown that 

sample size and percent of missing data are key characteristics in determining under what 

conditions each MDT should be used. For example, researchers conducting simulation 

studies using traditional regression have come to the general consensus that pairwise and 

listwise deletion methods work well when sample sizes are large, and the percent of 

missingness is small (Basilevsky et al. 1985; Kim & Curry, 1977; Roth & Swizer, 1995; 

Witta, 1992). Thus, in certain situations traditional methods can be used despite the 

underlying missing data mechanism (i.e., the way that missing data is related to complete 

data).  
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Unlike what we know about missing data in ordinary least squares (OLS) 

regression,  research on missing data in MLM is lacking and largely ignored in applied 

articles (van Buuren, 2011) and, thus, there is great need for research and proper 

dissemination in this area. Since MLM is an extension of traditional regression 

techniques, it is plausible that missing data treatments perform similarly with these 

models. That is, under most conditions researchers using MLM should use a modern 

technique to deal with data, but in certain situations traditional techniques could be 

appropriate. As noted earlier, MLM is more complicated than traditional regression 

because of the nesting of data and the presence of both fixed and random effects.  It is 

especially important to examine the impact of MDTs with MLMs, as research studies 

with nested data are susceptible to missing data due to data being collected from different 

sources. Few researchers, however, have examined the impact of MDTs on MLMs.  

Despite the fact that little is known about the conditions under which each MDT 

should or should not be used, listwise deletion has been the common method used in 

research that estimates MLMs (e.g. Archibald, 2005;  Bosker, Kremers, & Lugthart, 

1990; Desimore, 2005; Finn, Gerber, Achilles, & Boyd-Zaharias, 2001; Goddard, 

Goddard, & Tschannen-Moran, 2007; Hill & Rowe, 1996; Kyriakides, Campbell, & 

Gatsis, 2000; Lamb, 2002; Marks, 2000; Opdenakker, 2001; Xue, 2002), while few MLM 

studies have used  data imputation methods (e.g. Correnti & Rowan, 2007; Hill, Rowan, 

& Ball, 2005). This is probably because single-level MI has been developed to work with 

single-level analyses (e.g. PROC MI in SAS) but is inappropriate to use with MLMs. 

Using a single-level MI procedure in a MLM results in variance estimates that are biased 

toward zero and may yield other biased parameters (Mistler, 2013a). Instead, a multilevel 
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multiple imputation (MLMI) procedure would need to be used where separate imputation 

regression equations are needed for each level-2 unit, which is currently not available in 

most software packages. Further, the exploration of MDTs in MLMs is more complex 

because sample size and percent of missing data can happen at multiple levels. Thus, 

examining the impact of sample size and percent of missing data on MDTs in MLM 

requires the manipulation of these characteristics at both level-1 and level-2.  

Since MLMs are applicable to various applied research settings, it is important for 

researchers to be aware of the impact of MDTs on the inferences drawn from their 

analyses in order to appropriately handle missing data. To date, most of the research on 

the impact of MDTs is conducted using traditional regression techniques. Whereas a few 

studies have been conducted on the impact of MDTs in MLMs (Gibson & Olejnik, 2003; 

Kwon, 2011; Zhang, 2005) these studies typically examine missingness at only one level 

or are methodologically flawed (as outlined in Chapter 2). Since most software packages 

that handle nested data require that missing data be treated prior to data analysis, either 

by listwise deletion or imputation (Cai, 2008), the purpose of this study is to compare the 

impact of listwise deletion and multilevel multiple imputation (MLMI) on a two-level 

linear model.  

Study Design 

Currently, researchers commonly use software such as HLM 7 (Raudenbush, 

Bryk, & Congdon, 2005) or SAS PROC MIXED (SAS Institute, 2008) to estimate 

MLMs. These programs require that missing data be handled prior to analysis by listwise 

deletion or imputation. Listwise deletion is the most dominate method for dealing with 
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missing data (Peugh & Enders, 2004). This is problematic for MLM analyses because 

deletion can result in a substantial loss in sample size, especially when missing data 

occurs at level-2. However, if multiple imputation procedures can be used in the case of 

MLM, researchers could retain their original sample size and the full statistical power of 

the study, provided that the method does not bias parameter estimates. The goal of this 

study is to compare listwise deletion and multilevel multiple imputation (MLMI) in the 

context of a linear random intercept two-level MLM.  

Specifically, listwise deletion and MLMI were compared on four outcomes 

including a) bias in point estimates of the fixed effects, b) Type I error rates estimated for 

null fixed effects, c) statistical power for non-null fixed effects, and d) average 

confidence interval coverage for each fixed effect. In addition, several design factors 

were manipulated including a) missing data assumption, b) level-1 sample size, c) level-2 

sample size, d) percent of missing data at level-1, and e) percent of missing data at level-

2.   

In order to evaluate both MDTs, a simulation study was conducted. Data were 

generated under a linear two-level model. Simulation of the parameter values was 

designed to generalize to current applied research articles.  Once datasets were generated 

using SAS, certain percentages were deleted from two level-1 variables and two level-2 

variables (one from a null variable to examine Type I error rate and one from a non-null 

variable to examine power) using two methods. The first method randomly deleted 

certain percentages from the data set to meet the assumption of missing completely at 

random (MCAR). The second method deleted a certain percentage of missing data based 
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upon the value of another variable in order to meet the assumption of missing at random 

(MAR). More information about this is provided in Chapter 2 and Chapter 3.   

Once data were deleted to meet the assumption of MAR or MCAR, data were 

either imputed using Mplus (Asparouhov & Muthén, 2010) prior to being estimated with 

SAS PROC MIXED (a MLMI procedure), or the data were simply  estimated with PROC 

MIXED (which listwise deletes by default). Comparisons of the parameter estimates 

produced by each MDT were compared to the parameter estimates from the complete 

data and the population parameter values (where appropriate) according to the four 

outcomes listed above.  

Significance of the Study 

While other modeling techniques commonly discuss the problem of missing data 

(e.g. SEM), researchers using traditional MLM have largely ignored the topic. However, 

MLM studies have gained popularity among researchers over the past several decades. 

This is a problem as nested data typically come from many sources (e.g. students and 

teachers) which increase the chances of having missing data. To date only a few research 

studies have examined MDTs in the context of hierarchical data (e.g. Cai, 2008; Gibson 

& Olejnik, 2003; Zhang, 2005). These studies, however, have methodological flaws or 

limitations such as using a single level imputation procedure, examining a small number 

of imputations during the imputation phase of the imputation procedure, only examining 

data that are MCAR, and only examining missing data at one level of the MLM. As yet 

no empirical study has been published comparing listwise deletion to multiple imputation 
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using a MLMI procedure. Further, most research only examines one level of the MLM 

and neglects to examine both levels simultaneously.  

This research offers a thorough examination of the impact of MLMI and listwise 

deletion in MLMs, and has substantial implications for applied research. Since MLMs 

involve a further level of complexity (e.g. sample size at both level-1 and level-2), 

research on single-level analysis cannot easily be generalized to MLMs. Therefore, 

applied researchers who use MLM methods can benefit from this study. Further, 

methodologists who study MLM can also benefit and expand upon this study in order to 

inform best practices for studies with missing data. 

Limitations of the Study 

As with any research study, the generalizability of the results is limited to the 

design factors and facets manipulated in the study. For example, this study examined a 

random intercept model. Because of this, results may not generalize to more complex 

models such as models that have both random intercepts and random slopes. Also, 

univariate normality is assumed for all predictor variables and multivariate normality is 

assumed with the MLMI procedure. Applied researchers wishing to use the guidelines set 

forth by this study need to be cautious and mindful of how close their research scenarios 

mirror the design and data of this simulation study.  

Chapter Summary 

 The next chapter presents a general review of the literature on missing data 

mechanisms, missing data treatments, and previous research studies on missing data in 

multilevel models. Chapter 3 discusses the methodology of the current study, which 
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provides an in-depth description of the methods used to address the main goals of the 

study. 
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CHAPTER II 

Literature Review 

  Chapter 2 presents seven sections. In the first and second sections, an overview 

of missing data mechanisms and missing data treatments is presented. In the third section, 

a literature review of the consequences associated with missing data treatment selection is 

discussed. In the fourth and fifth sections an overview of missing data in multilevel 

modeling and an examination of how researchers have attempted to use multiple 

imputation in multilevel models is presented. The sixth section goes into detail on 

important factors to examine with missing data in multilevel models (MLMs). Finally, 

the seventh section discusses the goal of the current study. 

Missing Data Mechanisms 

 Rubin (1976) introduced a classification system for the issues associated with 

missing data that are prevalent in current literature. The classification system developed 

describes the probability of missing data and is known as the missing data mechanism. 

Three missing data mechanisms were described by Rubin (1976) and are explained in this 

section including missing not at random (MNAR), missing at random (MAR), and 

missing completely at random (MCAR).
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 Missing Not at Random. Missing not at random (MNAR) describes when the 

probability of missing data on a variable is related to the values on that variable itself, 

even after controlling for other variables (Rubin, 1976). Stated mathematically,  

p(R|Yobs, Ymis, Φ) 

where p indicates a probability distribution, R is the missing data indicator, Yobs is the 

observed part of the data, Ymis indicates the missing part of the data, and Φ is a parameter 

or set of parameters that describes the relationship between R and the data.  

 One example of a missing data scenario that is MNAR could be a situation where 

English as a second language students have missing test scores on an English 

comprehension exam because they experienced reading comprehension problems during 

the exam. In this example, scores are missing for the students who are ESL and have the 

lowest reading comprehension ability.  

 Missing at Random. Rubin (1976) used the term missing at random (MAR) to 

classify data where the probability of missing data on a variable is related to some other 

measured variable in the analysis, but not the values of that variable, itself.  Stated 

mathematically, 

p(R|Yobs, Φ) 

Where p indicates a probability distribution, R is the missing data indicator, Yobs is the 

observed parts of the data, and Φ is a parameter or set of parameters that describes the 

relationship between R and the data. Stated in words, this equation states that the 
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probability of missingness depends on the observed data via some parameter (Φ) that 

relates the observed data to the missing data indicator.  

There are many instances in which the missing data mechanism is MAR. For 

example, if a researcher was interested in job satisfaction from a nationally representative 

group of workers and also collected data on worker’s income, it could be that workers 

with low income are less likely to report their satisfaction. In this case, MAR missingness 

may occur. That is, the missingness in the job satisfaction variable can be explained by 

worker income.  

Missing Completely At Random. Rubin (1976) used the term missing 

completely at random (MCAR) to classify data where the probability of missing data on a 

variable is unrelated to other measured variables and is unrelated to the values of that 

variable, itself. Stated differently, data that meet the assumptions of MCAR are purely 

randomly missing and unrelated to other measured variables. Stated mathematically,  

p(R| Φ) 

Where p indicates a probability distribution, R is the missing data indicator, and Φ is a 

parameter or set of parameters that describes the relationship between R and the data. 

Conceptually, this states that some parameter (Φ) governs the probability of R, but 

missingness is no longer related to the data.  

An example of how this could happen in the behavioral and social sciences is 

where children in a district are missing achievement scores due to personal reasons (e.g. 

some could move to different states, some could be ill the day before the test, etc.). In this 

situation, purely haphazard missingness occurs that is not related to any other variables.  
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Missing Data Techniques 

Two main consequences of missing data are (a) a decrease in statistical power due 

to a loss of information and (b) the possibility of biased estimates for parameters and 

standard errors (Roth, 1994). Thus, conclusions drawn from data with missingness can be 

inaccurate if not treated accordingly. In the next two sections traditional and modern 

methods for dealing with missingness are presented along with pros and cons of each 

method. 

  Traditional Missing Data Treatments. Traditional techniques for dealing with 

missing data require the assumption that data are missing completely at random (MCAR). 

Of all the categorizations of missing data assumptions, this assumption is the most 

stringent. However, due to ease of use traditional techniques are appealing to researchers. 

Below are brief summaries of several traditional missing data techniques that are 

commonly seen in the literature or are most available in statistical packages. 

Listwise Deletion.  With this method, any observation with missing data on any of 

the variables included in the statistical analyses is discarded. Previous research has found 

that a majority of research studies (Peugh & Enders, 2004; Peng, Harwell, Liou, & 

Ehman, 2006) use listwise deletion. This method is primarily used for convenience. It is 

commonly available in software packages such as SAS and SPSS and has no subjective 

decision-making required to implement the procedure. Ultimately, if the data are 

incomplete, that observation, in most social science research, is thrown out of the 

analyses.  
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Although the implementation of listwise deletion is simple, research has shown that 

the disadvantages are vast. When the assumption of MCAR is not met, this technique can 

result in parameter bias, especially when the percent of missing data is high (Enders, 

2010; Kromery & Hines, 1994). Additionally, the probability of detecting a difference if 

one exists (i.e., power) could be impacted due to the decrease in the overall sample size. 

As Kim and Curry (1977) show, 59% of data can be lost using listwise deletion if only 

10% of the data were eliminated randomly from each variable in a data set with five 

variables. Elimination of 59% of the data would result in a dramatic decrease in power, 

while also limiting the generalizability of the sample to the population.  

As an example, picture a data set where a researcher was interested in job 

satisfaction from a nationally representative group of workers and also collected data on 

worker’s income. However, workers with low income might be less likely to report their 

satisfaction. If the researcher uses listwise deletion, those participants with low income 

scores are systematically deleted from the dataset. Provided there is a high correlation 

between the income measure and the job satisfaction measure, the remaining cases are 

unrepresentative of the complete data set, resulting in parameter bias. In addition to bias, 

eliminating participant data results in a lower sample size and thus lower power. This 

reduction in power is always a problem, even when data actually meet the assumption of 

MCAR (Enders, 2010). 

Pairwise Deletion. This method is similar to listwise deletion in that incomplete cases 

are missing; however with this method researchers attempt to use as much data as 

possible by eliminating cases on an analysis-by-analysis basis. Because of this, each 

analysis has a different sample size. The use of deleting cases on an analysis-by-analysis 
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method can be more powerful than listwise because all of the available data are used for a 

given analysis. According to Kim and Curry (1977) this makes pairwise deletion 

attractive to researchers especially when there are a small number of missing cases on 

each variable relative to the total sample size and a large number of variables are 

involved.  Although this is the default setting in SPSS, SYSTAT, and SAS for 

descriptive, correlation, and regression analyses this method is not as common as listwise 

deletion, with previous research supporting that only about 7.6% of researchers are using 

this method (Peng et al., 2006).  

Major disadvantages of this method occur when the assumption of MCAR is not met. 

Consistent with listwise deletion, when this assumption is not met this procedure can 

result in parameter bias. Unlike listwise deletion, since the subsets of cases are used 

differentially across analysis issues with association can result. Specifically, due to the 

method by which the covariance and correlation matrices are calculated, values 

exceeding |1| can occur causing issues with nonpositive definite matrices (Enders, 2010; 

Little, 1992; Marsh, 1998; Wothke, 1993). 

Single Imputation Methods. Single imputation is an umbrella term for procedures to 

treat missing data where, prior to analysis, one replacement value is calculated and 

assigned to each missing data point. Examples of such techniques include mean 

imputation, regression imputation, stochastic regression imputation, and hot-deck 

imputation.  Single imputation methods can be attractive to researchers because they do 

not require deletion of cases, resulting in a complete set of data.  Since the full data set is 

retained, power is not reduced.  
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However, techniques that utilize this procedure have serious disadvantages and most 

of the methods are generally not recommended for use (Enders, 2010).  Even under the 

MCAR assumption the techniques can produce biased parameter estimates.  In fact, mean 

imputation has been shown to be the missing data treatment with the most disadvantages 

(Brown, 1994; Enders & Bandalos, 2001; Gleason & Staelin, 1975; Kim & Curry, 1977; 

Kromery & Hines, 1994).  Though single imputation procedures can cause bias, two of 

the methods were instrumental to the development of modern missing data techniques, 

such as multiple imputation.  As such, they warrant some discussion here.  The following 

section provides a more complete explanation of regression imputation and stochastic 

regression imputation and offers an argument as to why this research focuses solely on 

multiple imputation.  

Prior to the development of stochastic regression imputation, researchers were using 

regression models to predict missing data from variables with no missing data, thus using 

the association among variables in a dataset to generate missing values (i.e. regression 

imputation). Below is an example of a regression model where two variables (parent 

income and parent highest education)  predict a third missing variable (prior 

achievement): 

𝑃𝑟𝑖𝑜𝑟𝐴𝑐ℎ𝑖 = 𝛽0 + 𝛽1(𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝑐𝑜𝑚𝑒𝑖) + 𝛽2(𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙𝐸𝑑𝑖) 

With this process, once data are imputed the values fall directly on a regression line with 

a nonzero slope resulting in a perfect correlation between the variables that are imputed, 

even when data are MCAR (Note that each missing data pattern involves its own 

regression equation). Thus, the imputed values lack variability that would have been 
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present had the data been complete, resulting in attenuated variances and covariances 

(Beale & Little, 1975; Gleason & Staelin, 1975; Kromery & Hines, 1994; Olinsky et al., 

2003; Raymond & Roberts, 1987; Timm, 1970), thus biasing parameters.  

In an attempt to adjust the attenuation of variance in regression imputation, stochastic 

imputation was developed (Enders, 2010). Stochastic imputation is also a regression 

based imputation procedure, yet goes a step further to replace the lost variability by 

adding a normally distributed residual term to each predicted score. Using the same 

equation above where I use two variables with complete data (parent income and parent 

highest education) to predict a third missing variable (prior achievement), the model 

would change to the following model: 

𝑃𝑟𝑖𝑜𝑟𝐴𝑐ℎ𝑖 = 𝛽0 + 𝛽1(𝑃𝑎𝑟𝑒𝑛𝑡𝐼𝑛𝑐𝑜𝑚𝑒𝑖) + 𝛽2(𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙𝐸𝑑𝑖) + 𝑧𝑖  

Adding the residual term (zi) creates an imputed value that is a random variable from a 

normal distribution with a mean of zero and a variance equal to the residual variance 

from the regression model. Stochastic regression has been found to be useful in imputing 

data even when data are MAR (Little & Rubin, 2002) and also produce similar estimates 

to modern missing data techniques (discussed below; Gold & Bentler, 2000). While 

stochastic regression appears to be a useful tool because it does not produce biased 

parameter estimates, standard analysis techniques treat the imputed values as real data 

thereby ignoring the same additional sampling error from the missing data. Because of 

this, stochastic imputation procedures produce biased standard errors that increase the 

likelihood of making a Type I error (Enders, 2010).  
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Modern Missing Data Techniques. Due to the shortcomings in traditional 

techniques, modern techniques for treating missing data have been developed. Modern 

techniques require the assumption that data are missing at random (MAR). The 

assumption of MAR is less stringent then the MCAR assumption because the pattern of 

missingness can be explained by other measured variables.  However, there is no way to 

test a MAR assumption with complete accuracy (Enders, 2010). Two MDTs have been 

developed that are considered to be “state of the art” (Schafer & Graham, 2002) including 

FIML and MI. 

Full Information Maximum Likelihood. Full information maximum likelihood 

(FIML) is a missing data procedure that borrows information from observed data to 

estimate the parameters and the standard errors. FIML was developed from maximum 

likelihood estimation therefore a review of maximum likelihood estimation is provided.  I 

also present a discussion about the slight differences between FIML and maximum 

likelihood for treating missing data.   

In cases of complete-data, the first step of FIML is to specify a population 

distribution, which is typically the multivariate normal distribution in educational and 

psychological research (Enders, 2010). Once a population distribution is assumed, a 

probability density function is used based upon the assumed distribution. A probability 

density function is a continuous random variable for which the mathematical integral 

gives the probability that the value of the variable lies within the same interval. Using the 

probability density function, researchers can calculate the probability of obtaining a score 

value given a particular mean and variance, which is the essence of FIML.  Using this 

probability density function, maximum likelihood estimation is an iterative process that 
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repeatedly auditions different values for population parameter values until it finds 

estimates that most likely produced the observed data (Enders, 2010). It does this by 

repeating the log-likelihood computations many times, each with different values of the 

population parameters. The algorithm evaluates the sample log-likelihood of the 

estimates until it chooses the most plausible parameter values. The ultimate goal of this 

procedure is to identify the unique combination of estimates that maximize the log-

likelihood and thus produce the best fit to the data.  

Using maximum likelihood estimation for missing data is conceptually the same, 

with a few more nuances, as the procedure with complete-data analysis. Similar to 

maximum likelihood estimation, a multivariate probability density function is specified 

that describes a multivariate normal distribution (in most cases).  From here, the 

algorithm routinely substitutes a score vector and a population parameter value into the 

density function to assess the fit until it finds scores that are most probable given the 

assumed distribution.  In situations with missing data, computations for individual log-

likelihoods and standard errors must be altered to accommodate different amounts of data 

for each case (i.e. the size and contents of the matrices could change across observations 

and the log-likelihood computations for a particular observation depend on complete 

data; Enders, 2010). In addition, the case of missing data requires an iterative 

optimization algorithm (typically the EM algorithm) that is not needed in the case of 

complete data (complete data are more straightforward because familiar equations define 

the maximum likelihood parameter estimates; thus the optimization algorithm is not 

needed [Enders, 2010]).  



www.manaraa.com

30 
 

Although slightly different than maximum likelihood, using FIML to treat 

missing data has the same ultimate goal as maximum likelihood estimation-- to identify 

the unique combination of estimates that maximize the log-likelihood and thus produce 

the best fit to the data. Take note that while the algorithm used in this procedure borrows 

information from other variables, it does not actually impute or replace the missing 

values. Rather, it uses all of the available data to estimate the parameters and standard 

errors (Enders, 2010).  

Schafer and Graham (2002) regard FIML as a state-of-the-art method as it 

produces parameter estimates free from bias under the less stringent MAR assumption, 

thus providing accurate parameter estimates in cases in which traditional methods would 

fail. Power is also preserved in this method because the procedure uses all available 

observed information. There are two major disadvantages with the method. First, FIML is 

not widely available in traditional software packages such as SPSS and SAS. Common 

specialty software packages that include the procedure are typically structural equation 

software packages such as LISREL and MPLUS.  

Second, FIML is typically more useful when missingness occurs in the dependent 

variable (Enders, 2014; van Buuren, 2011). This is because predicted variables are treated 

as fixed in statistical analyses. For the dependent variable we make distributional 

assumptions such as that the residuals are normally distributed. However, the predicted 

variables are treated as fixed and thus do not assume that the values of the predictors are 

sampled from a distribution, which is required for the incomplete variables when using 

FIML. As an example, the software package Mplus  (which uses FIML by default) makes 

a sharp distinction between independent and dependent variables such that missingness in 
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independent variables are listwise deleted while dependent variables with missing data 

are treated with FIML. While there are workarounds in Mplus, these workarounds require 

alterations to the original model that require the predictors to no longer be fixed (Hox, 

2014; C. Enders, personal communication, October 12, 2014).  

Multiple Imputation. As an alternative to FIML, multiple imputation (MI) is 

another state-of-the-art technique (Schafer & Graham, 2002) that makes the same 

assumptions as FIML (i.e. data are MAR and multivariate normally distributed) yet 

actually fills in missing values prior to analysis. Note that this process reflects single 

imputation methods, which have been known to introduce issues. For example, above I 

mentioned how stochastic regression results in unbiased parameters (Little & Rubin, 

2002), however increases the likelihood of making a Type I error because in standard 

analyses the imputed data are treated as “real” data. Research has also shown that the 

estimates yielded by stochastic imputation are similar to modern methods (Gold & 

Bentler, 2000; Newman, 2003). This is primarily because MI is an iterative version of 

stochastic regression imputation.  

In addition to understanding stochastic imputation, understanding Bayesian 

estimation is important to fully understand MI since this is where the iterative portion of 

the procedure is rooted. Traditionally, psychological and educational disciplines define a 

parameter as an estimate of the true value. In the Bayesian paradigm, a parameter is a 

random variable that has a distribution. Instead of trying to obtain the true value, 

Bayesian analyses seek to describe the shape of the distribution. In order to accomplish 

this, Bayesian analysis typically involves specifying a prior distribution, using a 

likelihood function to summarize the different parameter values, and combining the prior 
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distribution and the likelihood to generate a posterior distribution. The posterior 

distribution describes the relative probability of different parameter values, and the goal 

of the Bayesian analysis is to describe the shape of this distribution.  

 Conceptually, MI involves three stages to generate a complete data set—the 

imputation phase, the analysis phase, and the pooling phase, outlined below: 

1. The imputation phase.  This step is conceptually an iterative stochastic 

regression. First, the procedure creates m multiple sets (m is determined by 

the researcher and should be greater than 1) of the data, which each 

contain different estimates of the missing values using Bayesian 

estimation principles. This is accomplished by using an iterative algorithm 

that repeatedly cycles between an imputation step (I-step) and a posterior 

step (P-step; Enders, 2010) and is used to determine plausible values for 

the missing data. Specifically, the I-step uses a stochastic regression 

procedure to impute the missing values, and the P-step uses the filled-in 

data to generate new estimates of the parameter. At each P-step, the 

iterative algorithm uses the filled-in data from the preceding I-step to 

define the posterior distribution of the parameter. Once the posterior 

distribution of the parameter is defined, Monte Carlo simulation is used to 

update the estimates from the posterior distribution. Once this is selected 

the process then iterates back to the I-step and uses the updated parameters 

from the P-step to derive slightly different regression equations (again, 

using stochastic regression from the updated distribution) from the 

previous I-step and then cycles back to the P-step to update the 
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parameters. This cycle repeats a number of times and generates several 

copies of the data, each of which contains a unique estimate of the missing 

values.  

2. The analysis phase. Now that there are multiple sets of data, each of the 

datasets needs to be analyzed. Thus, this phase takes each of the m  data 

sets created in the imputation phase and analyzes it with the specified 

technique set by the researcher (e.g. if the researcher was using regression 

each of the data sets created would be analyzed using the same regression 

model of substantive interest to the researcher). Stated differently, this step 

applies the same model the researcher would use if the data were 

complete, just to each of the m data sets created in the imputation phase, 

resulting in m number of results. 

3. The pooling phase. Once each of the data sets has been analyzed, there 

are multiple sets of results from the last phase that that need to be 

combined into a single set of results. Rubin (1987) outlined formulas for 

pooling parameter estimates obtained during the analysis phase to 

combine results from each of m data sets into a final set of results. For 

example, in order to pool the means the arithmetic mean is taken across all 

m data sets, while pooling the standard errors is slightly more complex but 

the overall goal is the same.  

MI is an umbrella categorization for many procedures that use this three step 

approach. However, depending on the type of data used, a different algorithm may be 

needed in the imputation phase. The most common algorithm, termed the data 
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augmentation algorithm (Schafer, 1997; Tanner & Wong, 1987), is the most widely used 

and handles multivariate normal data. Whereas conceptually it sounds like this procedure 

is simply creating fake data, research has shown that this procedure produces unbiased 

parameter estimates because the estimates are averaged over a number of plausible 

estimates (Rubin, 1987; Schafer & Graham, 2002). Through this process the procedure is 

not placing a significant weight on a single imputation like single imputation methods 

(Enders, 2010).  

MI can be an effective approach that produces estimates that are consistent, 

asymptotically efficient, and asymptotically normal when data are MAR (Allison, 2002). 

The major disadvantage of MI is that there are several ambiguities, especially in the 

imputation phase. For example, a researcher must decide which variables to include in 

the imputation model, how many copies of the data should be made, and what algorithm 

to use. Thus, it is easy to misuse the procedure. However unlike FIML, this procedure is 

commonly available in most software packages and does not make distinctions between 

independent and dependent variables, and is thus more flexible than FIML.  

Consequences associated with MDT selection 

Two main consequences of missing data are (a) a decrease in statistical power due 

to a loss of information and (b) the possibility of biased estimates for parameters and 

standard errors (Roth, 1994). Recent literature has shown that traditional missing data 

techniques exhibit both of these problems depending on what type of missing data 

mechanism underlies the data. For example, listwise deletion leads to inflated standard 

errors for the parameter estimates in the case of MCAR and bias in the parameter 

estimates in the case of MAR (Allison, 2002). However, the general consensus is that 
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pairwise and listwise deletion methods work well when sample sizes are large, and the 

percent of missingness is small (Basilevsky et al., 1985; Kim & Curry, 1977; Roth & 

Swizer, 1995; Witta, 1992). Thus, using a traditional method may not reduce statistical 

power or bias estimates in some situations. Understanding in what situations traditional 

methods can be used is useful to applied researchers since employing traditional methods 

are much easier than employing modern methods. 

In comparison, modern methods have been shown to retain power while not 

biasing parameter estimates when models are correctly specified (Rubin, 1996). These 

methods can also be used when data are MAR or MCAR, and thus seem like they are 

always be the safe choice (Enders, 2010). MI is an option in many software packages, 

however several decisions need to be made about how to conduct the MI. Researchers 

need to determine what imputation model needs to be used, how many copies of the data 

set should be used, and what auxiliary variables can be entered. Thus, MI is much more 

complex and misspecification may be an issue. Nevertheless, this technique is also more 

versatile in that it does not make distinctions between dependent and independent 

variables. In addition, FIML is not readily available in statistical packages and is more 

suited to treat missing data in dependent variables. Due to the complexity of modern 

MDTs, it is useful to understand under what conditions it is appropriate to use a 

traditional method and under what conditions researchers have to use a modern method 

when conducting multilevel research. 
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Missing Data in MLMs 

The occurrence of missing data is not unique to single-level analyses. Missing 

data are also a serious concern for researchers using MLMs. Because data come from 

different sources (e.g. students and teachers) the probability of having missing data may 

be higher. In addition, if variables are missing for a level-2 predictor and deletion 

methods are used, all subsequent level-1 cases are deleted which could drastically reduce 

the overall sample size. Thus, some MDTs could affect how parameters are estimated at 

every level causing substantial bias to be present and thus wrongful conclusions could be 

drawn by applied researchers.  Due to the need for MLMs for nested data and the 

propensity for MLMs to have missing data, more research needs to be conducted on 

MDTs in the context of MLMs. 

The exploration of MDTs in MLMs has been lacking because MLMs are more 

complex than other models. Instead of looking at sample size and percent of missing data 

at just one level, we have to understand how both level-1 and level-2 sample size impact 

each technique as well as how percent of missing data at both level-1 and level-2 are 

impactful.  Further, the method by which data can be treated becomes more complicated 

in MLMs. Enders (2014) stated that FIML is not a great option for MLMs due to 

software limitations and mathematical restrictions mentioned above. Thus, the best option 

for MLMs is to use MI. However, since MLMs are more complex imputation procedures 

can involve variables from different levels, creating more subjective decisions to make 

than when using a single level MI procedure. To date a variety of MI procedures have 

been used with MLM, outlined next.  
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Examining MI Usage in MLMs 

MI has been implemented a few ways in MLMs. This section explores each of the 

methods used in the literature and the conclusions drawn from using restrictive MI, 

inclusive MI, and a single-level imputation procedure at multiple levels.  

Restrictive Imputation for Level-2 Imputation. With this method, single-level 

MI is used to impute level-2 data using only the level-2 predictors in the imputation 

model and thus level-1 variables are ignored (and subsequently listwise deleted). 

Previous research has determined that including more variables rather than less is 

recommended (Collins, Schafer, Kam, 2001; Enders, 2010). Thus, including level-1 

variables could offer valuable information, yet with restrictive imputation these data are 

left out.  

An example of research using this technique was conducted by Gibson and 

Olejnik (2003). In this study, the impact of 5 MDTs (listwise deletion, overall mean 

substitution, group mean substitution, the EM algorithm, and MI at the second level of a 

two-level MLM) was examined under the assumption of MCAR. When implementing the 

MI procedure, they performed MI only at level-2 and included only level-2 predictors in 

the implementation model (which they acknowledge as a limitation). Results from 

Gibson and Olejnik (2003) show that in the case of estimating fixed effects, listwise 

deletion and the EM algorithm performed satisfactorily while mean substitution and MI 

was not as effective. For random effects, only listwise deletion performed satisfactorily 

except when the level-2 sample size was small (N=30) and the proportion of missingness 

was high (i.e., 40%).  
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Results from Gibson and Olejnik (2003) showed that using MI in this way lead to 

biased estimates while using listwise deletion introduced no bias. However, there are 

three methodological flaws that could be influencing the results. First, the researchers 

used a single level procedure that has no information from level-1 variables. Second, the 

imputation phase only contained three imputed data sets. The recommended minimum 

number of imputations for a single-level imputation is 20 (Graham, Olchowski, & 

Gilreath, 2007). While the number of data sets that should be imputed in multilevel 

models has not been systematically examined, in general, increasing the number of 

imputation leads to increased accuracy (Enders, 2010), thus using three imputed data sets 

is less likely to produce accurate estimates. Lastly, it is not surprising that listwise 

deletion performed well given that data were simulated in order to be MCAR, which is 

the correct assumption for the technique. Given this research, it is unclear how listwise 

would perform under the less strict assumption of MAR, which is more useful to applied 

researchers. 

Inclusive MI for Level-2 Imputation. With inclusive MI, imputation at level-2 

is performed similar to restrictive MI, however instead of using only level-2 variables, 

level-1 variables are aggregated to level-2 and used in the imputation model. Researchers 

have shown that the use of more variables is greatly preferred to using fewer variables 

(Rubin, 1996; Enders, 2010). With an inclusive strategy, more explanatory variables are 

being used so there is a reduced chance of omitting an important cause of missingness, 

while also increasing the probability of noticeable gains in efficiency and reduced bias 

(Collins, Schafer, & Kam, 2001).  
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A few studies have been performed to understand how restrictive and inclusive 

MI compare. For example, Kwon (2011) examined the impact of listwise deletion, mean 

substitution, restrictive and inclusive EM algorithm (a FIML approach using the EM 

algorithm), and restrictive and inclusive MI on the second level of a two-level MLM 

where the probability of missingness was MAR. Results showed that the number of level-

2 predictors and sample size did not impact bias of the MDTs, while the proportion of 

missing data significantly impacted bias. Specifically, when the proportion of missing 

data increased, the relative bias among the MDTs tended to increase in most fixed effects 

and some random effects. Further, results showed the inclusive MI and listwise deletion 

generally outperformed the other MDTs that produced “practically acceptable” bias in 

most fixed effects that were highly related to missingness, however listwise deletion 

produced the largest RMSE and confidence intervals. Restrictive EM and inclusive EM 

performed well except in the cases with large proportion of missing data (30%).  Lastly, 

restrictive MI and mean substitution produce bias with even a small proportion of 

missing data (less than 15%). 

Additionally, Cai (2008) also used a simulation study in order to examine how 

listwise deletion, mean substitution, restrictive and inclusive EM, and restrictive and 

inclusive MI impact bias at level-2 in a 3-level MLM model under MAR missingness. 

For this study, restrictive MI only used level-2 variables during imputation and inclusive 

strategies used both level-1 and level-2 variables while disregarding level-3 variables 

(level-3 was simulated to have complete data). Results showed that the two MI methods 

did not produce satisfactory estimates for level-2 fixed effects, however inclusive MI 

outperformed the restrictive MI on estimates of fixed and random effects across all 
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conditions. Additionally, listwise deletion performed well when the level-2 sample size 

was small; however the precision was the worst. Lastly, it was determined that the 

restrictive EM method was effective in producing accurate and precise estimates for fixed 

effects and the inclusive EM performed well for estimating random effects.  

Using MI at Multiple Levels. To date, MI usage has been examined using higher 

levels and very few studies have imputed at multiple levels. While the higher levels 

should be of more concern since missing a variable at the highest level and using deletion 

methods can lead to deleting every corresponding level-1 unit, imputation at both levels 

is more appropriate in order to retain as much power as possible. Currently the only 

research done on using MI usage at multiple levels was done by Swoboda and Kim 

(2010). In this study they compared single-level MI methods to a two-level MI method 

under MCAR and MAR in a three level random intercept model in their simulation study. 

Overall, their results showed that using a single-level MI procedure does not take into 

account the nested structure of the data and does not work correctly for missing data at 

levels beyond level 1. Thus, a more complicated MI procedure that takes into account 

clustering has not been investigated in the context of imputing at multiple levels in a 

MLM. 

Table 2.1 provides a summary of the missing data techniques described in this 

section and Table 2.2 provides a summary of the research for each technique. Looking 

across this literature, MDT usage in linear MLM is not consistent resulting in confusion 

about which MDTs are acceptable to use with nested data.  Some literature suggests  that 

listwise deletion is an effective technique (Cai, 2008; Gibson & Olejnik, 2003; Kwon 

2011); however listwise deletion results in large RMSE and confidence intervals (Cai, 
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2008; Kwon, 2011) and only performed well when the level-2 sample size was small 

(Cai, 2008). Additionally, the way people use the single-level MI procedure varies, 

resulting in conflicting statements about the utility of MI for MLMs. Most, but not all, 

researchers have determined that single-level MI is inappropriate to use with MLMs (Cai, 

2008; Gibson & Oljnik, 2003; Kwon, 2001; Swoboda & Kim, 2010).  

Important Factors for Examining Missing Data in MLMs 

 Researchers who have investigated missing data in traditional regression have 

concluded that percent of missing data and sample size are important factors when 

investigating the utility of missing data techniques. However, examinations of these 

design factors are more complicated with MLMs, as each factor needs to be examined at 

multiple levels. Because of this, each factor needs to be examined in the context of 

MLMs in order to determine if the general guidelines established by previous literature 

hold for each level of the MLM. More information about relevant design factor is 

presented in this section. 

 Sample Size and Percent of Missing Data. Most comparison studies examining 

MDTs in a linear regression context include sample size and percentage of missing data 

as study variables (see Kromery & Hines, 1994; Raymond & Roberts, 1987; Roth & 

Swizer, 1995; Witta, 1992). This is because sample size is one of the main factors 

affected using traditional deletion methods and the final sample size after deletion is 

based upon the percent of missing data in the sample. In addition, very general guidelines 

exist from previous literature that demonstrate modern MDTs produce better estimates  
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Table 2.1 Names, Descriptors, and Description of Missing Data Techniques Used in 

Multilevel Models 

Full name of 

Technique 

Acronym/Descriptor 

Description 

Listwise Deletion LD 
The practice of deleting cases that have 

missing data on analytic variables  

Single-Level Multiple 

Imputation 
MI 

A data imputation procedure where a model is 

used to replace missing values. With single-

level imputation, the same regression 

equations are used for each level-2 unit. This 

can be performed many different ways (see 

single-level multiple imputation at multiple 

levels, restrictive multiple imputation for 

highest level imputation, and inclusive 

multiple imputation or highest level 

imputation) 

Single-level Multiple 

Imputation at 

Multiple Levels 

Single-level MI at 

multiple levels 

The use of a single-level multiple imputation 

model (e.g., PROC MI) applied separately to 

multiple levels of the hierarchy 

Single- Level 

Restrictive Multiple 

Imputation for 

Highest Level 

Imputation 

Restrictive MI 

A single-level imputation procedure where 

level-2 data are imputed using only the level-2 

predictors in the imputation model and thus 

level-1 variables are ignored (and 

subsequently listwise deleted).  

Single-Level 

Inclusive Multiple 

Imputation for 

Highest Level 

Imputation 

Inclusive MI 

A single-level imputation procedure where 

level-2 data are imputed using  the level-2 

predictors in the imputation model as well as 

level-1 predictors aggregated up to level-2.  

Restrictive 

Expectation 

Maximization 

Restrictive EM 

A Full Information Maximum Likelihood 

Approach using the Expectation Maximization 

(EM) algorithm on level-2 data with only 

level-2 variables included 

Inclusive Expectation 

Maximization 
Inclusive EM 

A Full Information Maximum Likelihood 

Approach using the Expectation Maximization 

(EM) algorithm on level-2 data with level-2 

variables included as well as level-1 variables 

aggregated to level-2 

Multilevel Multiple 

Imputation 
MLMI 

A data imputation procedure where a model is 

used to replace missing values. With MLMI, 

separate imputation regression equations are 

needed for each level-2 unit, thus imputing at 

multiple levels and taking clustering into 

account. Thus, level-1 and level-2 data are 

used and level-1 data does not need to be 

aggregated.  
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Table 2.2 Summary of Results from Previous Research Examining Missing Data 

Techniques in Multilevel Models 

 Listwise 

Deletion 

Single 

Level MI 

at multiple 

levels 

Restrictive 

MI 

Inclusive 

MI 

Restrictive 

EM 

Inclusive 

EM 

Fixed 

Effects 

+ (MCAR) 

+ (MAR) 

- (MAR) 

- (MCAR) 

- (MCAR) 

- (MAR) 

 

+ (MAR) 

+ (MAR)* 

+ (MCAR) 

+ (MAR)* 

+ (MAR) 

 

Random 

Effects 

+ (MAR) 

+ (MCAR)* 

 - (MAR) - (MAR)  + (MAR) 

Note. + indicates satisfactory; - indicates unsatisfactory; * indicates with some 

exceptions  

than traditional MDTs when the sample size is “small” and the proportion of missing data 

is “high” (Basilevsky et al., 1985; Raymond & Roberts, 1987; Roth & Switzer, 1995). 

Similarly, previous research also generally recommends that deletion methods work well 

in estimation of regression coefficients when the sample size is “large” and the number of 

missing values is “small” (Basilevsky et al., 1985; Kim & Curry, 1977; Roth & Switzer; 

1995; Witta, 1992) Thus, sample size and percent of missing data have a large influence 

on MDT selection and are interrelated.  

In the context of MLM,  much research has been conducted on the influence of 

sample size at multiple levels on accuracy of parameters, standard errors, confidence 

interval coverage, and statistical power (Austin, 2005; 2007; 2010; Bell, Morgan, 

Schoeneberger, Loudermilk, Kromery, & Ferron, 2014; Bell, Schoenenberger, Morgan, 

Ferron, & Kromery, 2010; Bell, Schoenenberger, Morgan, Zhu, Ferron, Kromery, 2011; 

French & Finch, 2011; Goldstein, 2003; Hox, 2010; Maas & Hox, 2004; 2005; 

Moineddin, Matheson & Glazier, 2007; Mok, 1995; Theall, Scribner, Broyles, Yu, 

Chotalia, Simonsen, Schonlau & Carlin, 2011; Van Der Leeden, Busing & Meijer, 1997). 

As a result of this literature, guidelines have been established to ensure adequate accuracy 
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and precision. However, all of these guidelines are based upon complete-data situations. 

With non-nested data, Kim and Curry (1977) showed that 59% of data can be lost using 

listwise deletion if only 10% of the data were eliminated randomly from each variable in 

a data set with five variables. Using a deletion method in MLM could result in an even 

more dramatic reduction of the sample size, especially if data are missing at level-2 as all 

the corresponding level-1 units will subsequently be deleted.  Thus, when deletion 

methods are used researchers should keep in mind recommended sample sizes as well as 

the final analytic sample size after the deletion method has been used, which is 

determined by the percent of missing data in the sample. 

Whereas very general rules for percent of missing data and sample size exist for 

selecting an MDT in linear regression, these rules do not easily generalize to MLM. This 

is because sample size and percent of missing data can occur at multiple levels. Thus, 

examining the impact of sample size and percent of missing data on MDTs in MLM 

requires the manipulation of these characteristics at both level-1 and level-2. To date, no 

research has been conducted to examine what sample sizes and percent of missing data at 

each level are optimal for listwise deletion and MLMI in MLMs. 

Current Study  

Unlike research on MDT usage in regression, research on MDT usage in linear 

MLM is not consistent, resulting in confusion on which MDTs are acceptable to use with 

nested data. Specifically, the MLM literature is consistent that inclusive strategies are 

better than restrictive strategies; however whether or not MI in general performs better 

than listwise deletion is inconsistent. Further, most studies that use MI use unorthodox 

methods of imputing, for example only including variables at one level of the MLM in 
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the analysis model, using single-level MI, and not using enough imputed data sets.  In 

addition, only one known study examines how an imputation procedure could be used to 

impute at more than one level. This study was also flawed because a single-level 

procedure was used and shown to be ineffective.  

 The fact that the literature is inconsistent is a concern because missing data are a 

reality of educational and social science research, yet there is no guidance to applied 

researchers on which methods are the most effective. In practice, all of the major MLM 

software packages only use complete data thus requiring researchers to either delete or 

impute prior to analysis. If this is not done, most packages use deletion methods by 

default. Some imputation strategies have also been used that impute at only one level in 

inclusive or restrictive ways, but all of the imputation procedures in these packages to 

date have ignored the clustering of multilevel data. 

The current study used multilevel multiple imputation procedure (MLMI) where 

separate imputation regression equations are needed for each level-2 unit, thus imputing 

at multiple levels and taking clustering into account. To date, using a MLMI technique 

has not been examined in the context of how it compares to listwise deletion on 

parameter bias. Understanding when listwise deletion can be used, or when a modern 

imputation technique (i.e. MLMI) should be used is of practical importance to applied 

researchers utilizing MLM. Thus, the ultimate goal of this study is to thoroughly examine 

the impact of MLMI and listwise deletion MDTs in MLMs. Specifically, the goal is to 

provide applied researchers with information regarding under what conditions MLMI and 

listwise deletion can be used to treat missing data. Thus, conditions examined in this 
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study were missing data techniques, percent of missing data at each level, sample size at 

each level, and missing data mechanisms.  
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CHAPTER III 

Method 

 The current study was designed to evaluate the performance of multilevel 

multiple imputation (MLMI) and listwise deletion missing data treatments (MDTs) for 

handling missing data in a linear  two-level random intercept models under both the 

missing at random (MAR) and missing completely at random (MCAR) mechanisms.  

Several design factors and criteria were used to evaluate the utility of both MDTs. 

Discussion of the methodology has three sections. First, explanations of the design 

factors are presented. The second section provides a description of the data generation 

process and the third section describes the procedure for determining important design 

factors.  

Design Factors 

 In the current study, listwise deletion and MLMI were evaluated using the 

following design factors: missing data mechanism, level-1 sample size, level-2 sample 

size, percent of missing data at level-1, and percent of missing data at level-2. All design 

factors were completely crossed yielding 2,000 conditions. For each of the 2,000 

conditions explored in the completely crossed design, 500 data sets were generated. Table 

3.1 presents a summary of the levels of design factors and condition count for simulation. 
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    Table 3.1 Levels of Design Factors and Condition Count for Simulation 

Factor  Levels Level 

Count 

Level-1 Sample 

Size 

 20-35 35-50 50-65 65-100 100-150  5 

Level-2 Sample 

Size 

 20 35 50 65 80  5 

Level-1 Percent 

of Missing Data 

 0% 5% 20% 40% 70%  5 

Level-2 Percent 

of Missing Data 

 0% 10% 20% 40%   4 

Missing Data 

Mechanism 

 MAR MCAR     2 

Missing Data 

Technique 

 LD MLMI     2 

Total Conditions        2,000 

 

In order to determine the range of each design factor applicable to applied 

researchers, a review of current multilevel modeling (MLM) articles was completed from 

2013 by typing “Multilevel Modeling” or “Hierarchical Linear Modeling” into 

PsychInfo. To be included in the review, articles had to meet the following criteria: 

 Include analysis from a two-level linear organizational model (e.g. students nested 

within schools); 

 Be an applied research article (demonstration and methodology articles were not 

included); and 

 Be peer reviewed. 

Thirty-nine applied articles were retrieved from the search. Each article was reviewed, 

and information regarding sample size at each level, percent of missing data at each level 

(when available), and the number of variables at each level was recorded (see analysis 
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section for more information on the model). An explanation of each design factor and 

results from the review are explained below. 

Missing Data Mechanism. As described in Chapter 2, Rubin (1976) introduced a 

classification system for missing data problems that is prevalent in current literature. 

Rubin (1976) used the term missing completely at random (MCAR) to classify data 

where the probability of missing data on a variable is unrelated to other measured 

variables and is unrelated to the values of that variable, itself. Traditional MDTs (such as 

listwise deletion) assume that data are missing MCAR. When the assumption of MCAR 

is not met, this technique can result in parameter bias, especially when the percent of 

missing data are high (Enders, 2010; Kromery & Hines, 1994). Some research suggests 

that when sample size is large and the percent of missingness is low this technique can be 

used even if the MCAR assumption is violated (Basilevsky et al., 1985; Kim & Curry, 

1977; Roth & Swizer, 1995; Witta, 1992). However, the usefulness of listwise deletion 

under MCAR has not been verified with MLMs. 

Rubin (1976) used the term missing at random (MAR) to classify data where the 

probability of missing data on a variable is related to some other measured variable in the 

analysis, but not the values of that variable, itself. This missing data mechanism is less 

stringent than the MCAR mechanism and is generally considered to be a more feasible 

assumption to make, especially in social science research (Enders, 2010). Using OLS 

regression methods, researchers recommend the use of modern techniques due to the less 

stringent assumptions needed and state that modern methods work better when the 

missing data mechanism is either MCAR or MAR. However, this has not been confirmed 

in MLM. Since the utility of listwise deletion and multiple imputation depend on 
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underlying missing data mechanisms, this study examined the effectiveness of listwise 

deletion and MLMI under both the MCAR and MAR assumption.  

Percent of Missing Data. Previous research has shown that the percent of 

missing data is also related to performance of MDTs. Specifically, research with 

traditional regression has consistently found that if the percent of missing data is “small” 

then in some situations using listwise deletion may not bias parameter estimates 

(Basilevsky et al., 1985; Kim & Curry, 1977; Roth & Swizer, 1995; Witta, 1992). In 

order to examine percent of missing data in MLM an added level of complexity needs to 

be considered where the percent of missingness needs to be examined at each level.  

 In the 2013 applied articles that were reviewed to inform the design of the current 

study, only seven of the thirty-nine articles mentioned missing data at level-1. The 

median missingness reported was 32% with a first quartile of 10%, a third quartile of 

59%, a minimum of 6% and a maximum of 67%. In order to capture these values, I 

simulated 4 different magnitudes of missing data including 5% (small amount), 20% 

(moderate), 40% (medium to large) and 70% (large amount of missing data). At level-2, 

no articles indicated missing data so the same percentages were simulated to match the 

level-1 missing data magnitudes, with the elimination of the 70% level as that magnitude 

of missingness at level-2 is unfeasible in a multilevel model with the level-2 sample sizes 

found in applied research journals. That is, it would not seem scientifically sound to 

analyze data using MLMs if they had 30 level 2 units with 70% of the units containing 

missing data. Instead, in this situation a researcher would be more likely to use single 

level regression with robust SEs – more of a contextual analysis model at which point the 

researcher could use single level imputation for the missing variable.   
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Sample Size. Unlike traditional regression, MLM has observations at multiple 

levels. Thus, sample size was examined at both level-1 and level-2. After reviewing 

applied, two-level organizational MLM articles, level-1 sample sizes had a median of 

14.2 level-1 units per level-2 unit. Additionally the first quartile was 5.33 level-1 units 

and the third quartile was 53.7 units per level-2 unit (with a minimum of 2 units and a 

maximum of 2,508 units). Since the overall goal of this study is to provide guidelines as 

to when listwise deletion and MLMI should be used, and to ensure that design factors are 

relevant to applied researchers, the following Level-1 sample size ranges were used: 20-

35, 35-50, 50-65, 65-100, and 100-150.  

Notice that the sample size used did not actually capture the median number of 

level-1 units in applied MLM articles. This was done due to feasibility of the overall 

model that was used. Because the percent of missing data was distributed across two 

predictors, to allow the examination of missingness on both Type I error rates and 

statistical power (more details provided below in simulation section), a sample size 

smaller than 20 was not feasible. For example, if I were to include the median of 14 

level-1 units per level-2 units, and took 5% of 14 (which is the smallest percent of 

missing data used in the study), this would yield a value less than 1 so no removal of 

cases would be made and thus missingness would be 0%. Thus, level-1 sample sizes were 

selected due to feasibility of the percent of missing data selected, while the last two 

ranges are used to examine how MDTs perform with larger values.  

At level-2, the applied research articles had a median of 45 level-2 units. 

Additionally, the first quartile was 20.5 level-2 units and the third quartile was 129 level-

2 units (with a minimum of 6 units and a maximum of 577). In order to capture level-2 
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sample sizes commonly used in the literature as well as have a feasible amount of design 

factor levels to examine at what sample size different MDTs can be utilized, level-2 

sample sizes of 20, 35, 50, 65, and 80 were used.     

Simulation 

 Data were generated using SAS IML (SAS Institute Inc., 2008) based on a linear 

two-level organizational model in which level-1 units are nested within level-2, with all 

level-1, level-2, and cross-level collinearity values of 0.25 (a small to moderate 

correlation based on Cohen, 1988). Simulated variables were generated from a normal 

distribution with a variance of 1.0 using RANNOR random number generation in SAS 

version 9.3 (SAS Institute Inc., 2008). All variables were generated to be normally 

distributed and continuous at both level-1 and level-2. The data were simulated such that 

the second predictor at each level had no effect (γ = 0; for estimating Type I error) while 

all remaining predictors had non-null effects (γ ≠ 0; for estimating statistical power).  The 

data simulation program was checked by examining the matrices produced at each stage 

of data generation. Descriptive statistics were generated and analytical models were 

conducted using simulated data sets to ensure the desired characteristics were achieved.  

 The 39 articles that were reviewed to inform the study design factors were also 

reviewed to determine non-null values worthy of detection and typical intra-class 

correlation coefficients (ICC). For each of the articles identified, the absolute values of 

gamma coefficients were tabulated separately for level-1 and level-2 predictors. Table 3.2 

displays the basic descriptive statistics of the gamma values and ICC values obtained 

across articles.  
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Table 3.2 Descriptive Statistics of Gamma Values and ICCs Obtained from 2013 

Literature Search 

Statistic 

Overall 

Gamma 

Level-1 

Gamma 

Level-2 

Gamma 
ICC 

Mean 0.706 0.688 0.721 0.152 

Median 0.234 0.224 0.194 0.110 

SD 1.159 1.479 1.410 0.142 

Minimum 0.014 0.009 0.002 0.001 

Maximum 4.769 7.007 6.804 0.530 

 

The overall mean gamma value was 0.706 and the median was 0.234, indicating that 

there is positive skew in gamma values. Because of the positive skew, a gamma value of 

0.47 was chosen indicating that a 1-unit change in simulated non-null predictors is 

associated with a 0.47 unit increase in the simulated dependent variable. The overall 

mean ICC value was 0.152 and the median was 0.110, indicating that there is a positive 

skew in ICC values. Because of this, an ICC value of .131 was used. Once data were 

generated, 500 replications were conducted for each of the design conditions in the study.  

Based on the work of Burton, Altman, Royston, and Holder (2006), the following 

formula calculates the level of accuracy obtained with a certain gamma value: 

𝑁𝑠𝑖𝑚 = (
𝑍

1−(
𝛼
2

)
𝜎

𝛿
)

2

 

Where δ is the specified level of estimate accuracy desired, 𝑍1−(
𝛼

2
) is the 1-(α/2) quantile 

of the standard normal distribution and σ is the standard deviation of the parameter of 

interest. Solving for δ above using a gamma value of 0.47, a variance of 0.006 (based 

upon preliminary simulations), an alpha value of .05 and 500 replications, yielded an 
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estimate within 1.7% accuracy. Thus, five hundred replications were chosen as it 

provided adequate accuracy. 

After each of the 2,000 datasets were generated and prior to data analysis, data 

were deleted from two level-1 predictors and two level-2 predictors (one null and one 

non-null variable at each level) to meet the assumption of MAR and MCAR. Thus, 

allowing me to examine the utility of both MDTs under both missing data mechanisms 

for both statistical power and type I error. In this study, X1 was the non-null variable at 

level-1, X2 was the null variable at level-1, W1 was the non-null variable at level-2, and 

W2 was the null variable at level-2 (the complete model is presented in the analysis 

section below). The process where observations were deleted from X1, X2, W1, and W2 

depended on the missing data mechanism under study. Data deletion strategies for both 

MAR and MCAR mechanisms are presented below 

MCAR Deletion. In order to ensure that missing data met the assumption of 

MCAR, two extra variables Z1 and Z2 (i.e. variables that were not used in the MLM 

analysis or the imputation process and not correlated to any other variable) were 

simulated from a uniform distribution ranging from 1 to 100 for each observation. Once 

the variables were created from the uniform distribution, values less than a pre-specified 

cutoff were deleted. X1 and W1 cutoffs were at the lower end of the distribution of Z1 

and Z2, respectively and X2 and W2 cutoffs were at the upper end of the distribution 

from Z1 and Z2, respectively. Thus for X1, 2.5, 10, 20, and 35 were the cutoffs for 5%, 

20%, 40%, and 70% missingness, respectively. The cutoffs for W1 were 2.5, 10, and 20 

for 5%, and 40%, respectively. Cutoffs for X2 were 97.2, 90, 80, and 65 for 5%, 20%, 

40% and 70%, respectively. Lastly, cutoffs for W2 were 97.2, 90, and 80 for 5%, 20%, 
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and 40%, respectively. This method (see code in Appendix A) allowed missingness on 

either the null missing variable or the non-null variable, but never on both variables. Due 

to the fact that two variables at each level had missingness, the total percent of 

missingness for a particular level was divided between the two variables that had missing 

data. Thus, if the condition called for 20% missing data at level-1 and 40% missing data 

at level-2, 10% were missing from X1 and X2 and 20% were missing from W1 and W2.  

MAR Deletion. In order to ensure that variables were deleted to meet the 

assumption of MAR, the third variable at each level (X3 for level 1 and W3 at level 2) 

was simulated to follow a normal distribution, and the pattern of missingness was 

determined using this variable (this variable was used in the final MLM analysis and the 

imputation process). MAR was produced by selecting eligible observations for deletion in 

X1 for all the cases above the 50th percentile of X3 with a probability of 2.5%, 10%, 

20%, and 35% of the total sample size to yield an expected 5%, 20%, 40%, and 70% 

percent of missing data at level-1. To create missingness in X2, eligible cases were 

selected below the 50th percentile of X3 with the same percentages previously stated.  

Similarly, MAR was produced in level-2 by selecting eligible cases in W1 for all 

the cases above the 50th percentile of W3 with a probability of 2.5%, 10%, and 20% of 

the total sample size to yield an expected 5%, 20%, and 40% percent of missing data at 

level-2, while eligible cases in W2 were selected below the 50th percentile of W3. This 

method allowed missingness at either the null missing variable or the non-null variable, 

but never on both variables. Once eligible cases were identified, PROC 

SURVEYSELECT, a SAS procedure that allows stratified sampling (with and without 

replacement) by selecting samples within specified strata, was used to determine missing 
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data.  For example, if a particular condition requires 5% missingness at level-1, PROC 

SURVEYSELECT was used to randomly select the eligible cases without replacement 

from the complete data with the probability of 2.5% for X1 and X2 (code provided in 

Appendix B).  

After deleting data to meet the assumption of MCAR or MAR, data were 

analyzed by PROC MIXED (which listwise deletes) or imputed using an imputation 

method in MPLUS (Asparouhov & Muthén, 2010). The multilevel multiple imputation 

(MLMI) method in Mplus was used because single-level multiple imputation (i.e. PROC 

MI and PROC MIANALYZE in SAS) assume that data share a common mean vector and 

covariance matrix and fails to take clustering into account. Thus, if a single-level 

imputation algorithm was employed, a single regression equation that is common to 

every level-1 unit would be used regardless of the fact that level-1 units are nested within 

level-2 units. Using Mplus’ multilevel imputation method allowed for each cluster to 

have a unique regression line, thereby eliminating bias that occurs due to model 

misspecification. As explained in Chapter 2, researchers using multiple imputation in 

MLMs predominantly use a single level imputation procedure at the highest level only. 

With the multilevel multiple imputation (MLMI) method, data were imputed at both 

levels simultaneously. 

During this MLMI, all variables are treated as outcomes (regardless of missing 

data pattern) with all other variables as predictors and an unrestricted covariance matrix 

(Schafer, 1997). This method was used because this procedure has been shown to be 

effective with single-level analyses, preserves all available information during the 

imputation phase, has been extended to the multilevel case, is mathematically congenial 
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for intercepts as outcomes multilevel models as used in this study, and allows for 

imputation to happen for both level-1 and level-2 variables (Enders, Mistler, &Keller, 

2015; Schafer, 1997). Rubin (1987) has shown that using a model that has all available 

information preserves the associations from the analysis of the model, and omitting 

important effects can bias parameter estimates toward zero (Rubin, 1987).  

Additionally, there are various software packages that have extended this single-

level routine to the multilevel context including MPlus (Muthén & Muthén, 1998–2012), 

the PAN and MLMMM packages in R (Schafer, 2001; Schafer & Yucel, 2002; Yucel, 

2008), and SAS (Mistler, 2013). Slight differences arise in the way these software 

packages work. The MPlus version was chosen as it imputes at both level-1 and level-2 

(The R packages only imputes level-1 variables), required less coding, and could be ran 

automatically using the MplusAutomation package in R (See an example of Mplus code 

in Appendix C). While the SAS macro did impute at both level-1 and level-2, it was a 

personal macro created to match the MPlus output, but various testing showed slight 

differences in the output from the MPlus and SAS macro (Enders, personal 

communication; Mistler, personal communication).To date, Mplus is the only software 

package where a multilevel imputation procedure is built into the software package that 

allows varaibles at both level-1 and level-2 to be imputed.  

As stated in Chapter 2, there are several ambiguities that occur when performing 

multiple imputation consisting of which variables to include during the imputation model, 

how many copies of the data should be made, and what algorithm to use. During a 

simulation study these ambiguities are much clearer given that I knew exactly which 

variables were related to missingness. Thus, any inferences made from this research 
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assume that the imputation model is specified correctly. In addition, the number of copies 

made during the imputation phase was 20, as recommended by Graham, Olchowski, and 

Gilreath (2007). Once imputations were created they were stacked together into one file 

and then pooled in SAS using the MMI_ANALYZE (Mistler, 2013b) macro to create the 

final results. This macro accomplishes the analysis and pooling phase (see Chapter 2 for a 

description of these stages) by taking each of the 20 copies of the data and analyzing 

them separately and then pooling the results according to Rubin’s (1987) formulas.  

Model Analysis 

After each data set was generated, the simulated sample was analyzed as a two- 

level organizational model via the PROC MIXED procedure in SAS (SAS Institute Inc., 

2008) using the maximum likelihood estimation with Kenward-Roger degrees of 

freedom. Given the impact that model size can have on the imputation procedure, the 

number of predictors at both level-1 and level-2 was also examined in the 2013 articles 

reviewed to help develop study design factors. Specifically, as Rubin (1996, p. 479) 

states, “the advice has always been to include as many variables as possible when doing 

multiple imputation.”  Thus, with more variables in the imputation model, the more 

effective the imputation process (Rubin, 1996; Enders, 2010). This is primarily because 

MI (as well as FIML) uses associations among other variables in order to fill in missing 

values, and the more information received from variables, the more accurate and precise 

the estimates will be. This is especially true when variables have a high correlation (r  > 

.40) with the missing analysis variable (Enders, 2010). Research also states that even 

when variables are provided with weak or zero correlations there is no harm in using 

more variables (Collins et al., 2001).  
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Because of this, great care was taken to make sure the model estimated in this 

study was as close to the average model in applied literature. After reviewing 2013 

applied research articles, 34 out of 39 articles modeled fixed effects only, thus the model 

estimated in this study was a random intercept model. In addition, the article review 

yielded a median of four predictors at level-1 and a median of 2 predictors at level-2. 

However, in order to examine all criteria at level-2, three variables were needed. 

Specifically, at level-1 and level-2, there needed to be at least three variables -- one 

variable with a non-null effect with missingness (X1 and W1), one variable needed to 

have a null effect with missingness (X2 and W2), and one non-missing continuous 

variable needed to be present to determine the pattern of missingness (i.e., to delete data 

under the MAR assumption; X3 and W3). In addition, in order to be as close to the 

applied research articles as possible, a fourth variable was included at level-1.  Thus, the 

following model was examined for both the complete data set as well as the data sets 

simulated to be MCAR and MAR: 

𝑌𝑖𝑗 = 𝛾00 + 𝛾01(𝑊1)𝑗 + 𝛾02(𝑊2)𝑗 + 𝛾03(𝑊3𝑗)𝑗 + 𝛾10(𝑋1)𝑖𝑗 + 𝛾20(𝑋2)𝑖𝑗 + 𝛾30(𝑋3)𝑖𝑗

+ 𝛾40(𝑋4)𝑖𝑗 + 𝑢0𝑗 + 𝑟𝑖𝑗 

where 𝑌𝑖𝑗 represents an outcome variable for student i in school j, γ00 is the intercept, 

which represents the grand mean of the outcome variable across students and across 

schools, W1j – W3j are school-level predictors for school j and γ01 – γ03 represent slope 

coefficients associated with the corresponding Wj predictor, u0j is an error term 

representing a unique effect for school j, and γ10, γ20, γ30, and γ40 estimate the average 

effect of each of the four student-level predictors. The absence of an error term for the 
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individual level variables indicates that the effect of the student-level predictor is fixed, 

or held constant across schools.  

Outcomes 

 Four outcomes were examined in this simulation study, including (a) bias in point 

estimates for the fixed effects, (b) type I error rates estimated for null fixed effects, (c) 

statistical power for non-null fixed effects, and (d) average confidence interval coverage 

for each fixed effect. This section will provide details on how these outcomes were 

calculated. 

Bias. Because the goal of using a missing data treatment is to obtain estimates, 

standard errors, and p-values comparable to what we would expect if the data were 

complete, bias was captured by subtracting each fixed effect with missing data to its 

complete data counterpart (i.e., the same data set prior to deletion) and thus can be 

represented by the following equation: 

𝐵𝑖𝑎𝑠𝑖𝑘 = �̂�𝑖𝑘(𝑚𝑖𝑠𝑠) − �̂�𝑖𝑘(𝑐𝑜𝑚𝑝) 

Where �̂�𝑖𝑘(𝑚𝑖𝑠𝑠) represents the estimate of the ith fixed effect at level k under a 

condition that was subjected to either listwise deletion or MLMI (and thus had missing 

data), and �̂�𝑖𝑘(𝑐𝑜𝑚𝑝) represents the estimate of the ith fixed effect at level k where data 

were complete. Thus, a value of zero would indicate that the estimate from the missing 

data is equal to the estimate for the complete data; a positive number indicates that the 

estimate for the missing data was larger than the estimate for the complete case; and a 

negative value indicates that the estimate for the missing data is smaller than the estimate 
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for the complete case. Once bias was calculated for all 500 replications, an average was 

taken. Thus, bias, in this study, is the average deviation of the treated data from the 

complete data across the 500 conditions. Bias has been calculated similarly in previous 

missing data research (Enders, Mistler, & Keller, in press).  

Type I Error Rate. A Type I error occurs when a significance test results in 

rejection of a true null hypothesis. In the context of this study, a Type I error occurred 

when a variable was simulated to have no effect (i.e., λ = 0), but the hypothesis test 

associated with the estimate of that effect yielded a p-value for the estimate less than .05 

(the a priori established α value). In this study, two variables with missingness were 

simulated to have a null effect, one at level-1 (X2) and one at level-2 (W2). In order to 

calculate Type I error rate, the proportion of the replications where X2 or W2 had a p-

value less than .05 was recorded.  

In addition to calculating Type I error rate the traditional way described above, a 

difference in Type I error rates was also calculated.  Specifically, the Type I error rate 

from all 500 replications for each condition was calculated for the treated conditions (i.e., 

the data that contained missingness and was then subjected to either MLMI or listwise 

deletion). Likewise, the Type I error rate of the same 500 replications prior to deleting 

data was calculated for the complete observations (e.g., the simulated datasets before 

missing data were generated and treated). The difference of these two rates was 

calculated by subtracting the Type I error rate of the missing case to the Type I error rate 

of the complete case. Thus, a value of 0 indicates that Type I error of the missing 

condition is equal to the complete data; a positive value indicates that Type I error rate is 

higher for the missing condition; and a negative value indicates that the Type I error rate 



www.manaraa.com

62 
 

of the missing condition is smaller than the Type I error rate of the complete data. 

Examining Type I error rates using both of these approaches allowed me to examine if 

the overall Type I error rate exceeds my a priori established alpha rate of .05 and how 

Type I error changes from the complete data. 

Statistical Power. Power describes the probability of correctly rejecting a false 

null hypothesis. In the context of this study, power is the proportion of the total 

replications for each condition where a gamma value simulated to have an effect (i.e., γ ≠ 

0) yielded a p-value value below .05 (the established α). In this study, two variables with 

missingness were simulated to have a non-null effect, one at level-1 (X2) and one at 

level-2 (W2). Thus, to determine the power, I calculated the proportion of replications for 

each condition that had p-values less than .05. 

Similar to Type I error rate, power for the treated data was also compared to the 

power from the complete data. Thus, for the results using this comparison method, a 

value of 0 indicates that the power of the missing condition is equal to the complete data; 

a positive value indicates that the power is higher for the missing condition; and a 

negative value indicates that the power of the missing condition is smaller than the power 

of the complete data. Using both of these methods allowed me to examine how power 

compares to the nominal level of .80 as well as how power of the treated data differed 

from the complete data.  

Confidence Interval Coverage. Confidence interval coverage is the proportion 

of the replications where the confidence interval contained the value of interest. As stated 

previously, when dealing with missing data the goal is to have estimates that match the 
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complete data. The values of interest in this context are the gamma estimates produced by 

the complete data set, thus all coverage values represent the proportion of replications 

that contain the gamma estimate produced by the complete data set. In order to calculate 

this, a flag was created to indicate whether or not the confidence interval created by the 

model with the missing data contained the estimated gamma value from the model with 

complete data (the flag was a value of 1 when the confidence interval did contain the 

estimated gamma from the complete case and a value of 0 when the confidence interval 

did not contain the estimated gamma from the complete case) and averaging the flag 

variable across all 500 replications.   

 Basic descriptive statistics were conducted to examine the distribution, central 

tendency, and range information for each of the outcomes of interest (outlined in the next 

section). To identify the most influential design factors for each of the outcomes, a third-

order analysis of variance (ANOVA) model was conducted for each outcome with every 

design factor entered as a crossed independent variable. ANOVA eta-squared (η2) values 

were calculated to capture the proportion of outcome variance explained by each factor 

combination. All design factors or combinations of design factors with ANOVA eta-

squared greater than .02 were plotted for further investigation. Once all plots were 

created, the results of the design factors with the largest eta-squared values and the design 

factors of upmost substantive interest were identified and are depicted and summarized in 

Chapter 4. 
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Chapter Summary 

Chapter 3 explained in detail the methods for investigating the utility of MLMI 

and listwise deletion in two-level organizational models with continuous predictors. The 

next chapter, Chapter 4, contains the results of the study and has four sections, one for 

each of the four outcomes of interest. Within each section, a presentation of those 

conditions found to be associated with each outcome overall, by level-1, and by level-2 

are included. Outcomes are presented in graphical form where appropriate, accompanied 

by explanatory text. 
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CHAPTER IV 

Results 

 The present study was intended to compare the performance of multilevel 

multiple imputation (MLMI) and listwise deletion in the context of linear two-level 

organizational models with continuous predictors. In order to compare the two missing 

data techniques (MDTs), a Monte Carlo simulation study was conducted that mimics data 

used in current applied research articles (see the simulation section in Chapter 3). Design 

factors of interest included missing data technique, level-1 sample size, level-2 sample 

size, level-1 percent of missing data, and level-2 percent of missing data (see Table 2) 

totaling 2,000 conditions. Each condition was replicated 500 times. Four primary 

outcomes were examined in this Monte Carlo study: (a) bias in point estimates for the 

fixed effects, (b) Type I error rates estimated for null fixed effects and the difference in 

Type I error between the complete and treated conditions, (c) statistical power for non-

null fixed effects and the difference in power between the complete case and treated 

conditions, and (d) average confidence interval coverage for each fixed effect.  

To identify the most influential design factors for each of the outcomes, a third-

order analysis of variance (ANOVA) model was conducted for each outcome with every 

design factor entered as a crossed independent variable. ANOVA eta-squared (η2) values 

were calculated to capture the proportion of outcome variance explained by each factor 

combination. In this chapter, I present those conditions found to be associated with the 
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outcomes in graphical form where appropriate,  accompanied by explanatory text. The 

results from the simulations are organized by outcome, with results for the overall 

outcomes presented first, then by level-1 and lastly by level-2. All effects and interactions 

mentioned in text or displayed graphically were deemed of some moderate practical 

significance based upon associated η2 values (Cohen, 1988) or show the impact of my 

key design factors on the outcomes (i.e., MDT, missingness, and mechanism).  

Bias 

 Overall Bias. The overall mean bias was very close to zero (M = -0.002, SD = 

0.004, min = -0.014, max = 0.0084). However, noteworthy amounts of variance occurred 

for overall bias that was explained by the interaction between MDT and level-1 

missingness η2 = .280). Figure 4.1 depicts the distribution of overall bias as a function of 

the interaction between MDT and level-1 missingness. When percent of missing data at 

level-1 was 0% or 5%, bias was comparable between the two MDTs and close to zero. 

However, when missingness was 20% or above, small amounts of negative bias were 

present when MLMI was used (bias was -.003, -0.006, and -0.010 for 20%, 40% and 

70%, respectively). Listwise deletion, however, remained close to 0 regardless of level-1 

missingness. 

Although the ANOVA did not show that missing data mechanism was an 

important predictor of bias, this design factor was of substantive interest due to previous 

research on listwise deletion for non-hierarchical data. Specifically, previous research has 

stated that listwise deletion produced biased estimates when the amount of missingness 

was high and data were missing at random (MAR), whereas imputation methods should 

not produce biased estimates (Enders, 2010), suggesting a three way interaction between 
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MDT, mechanism, and missingness. Figure 4.2 depicts overall bias as a function of the 

three way interaction of MDT, level-1 missingness, and mechanism (η2 < .001) and 

Figure 4.3 depicts bias as a function of the three way interaction of MDT, level-2 

missingness, and mechanism (η2 < .001).   

 
Figure 4.1 Distribution of Overall Bias by Missing Data Technique and Level-1 

Missingness. 

 

In Figure 4.2, the distribution of bias for listwise deletion was the same regardless 

of mechanism. Also, although MLMI produced negative bias as level-1 missingness 

increases (as shown previously); the mean was the same across the two missing data 

mechanisms, suggesting that the estimates of MLMI are equal regardless of mechanism. 

Similarly, Figure 4.3 shows the distribution of bias for listwise deletion and MLMI did 

not change as a function of data missing at random (MAR) or missing completely at 

random (MCAR) nor the percent of missing data at level-2. 
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Figure 4.2 Distribution of Overall Bias by Missing Data Technique, Level-1 

Missingness, and Missing Data Mechanism. 
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Figure 4.3 Distribution of Overall Bias by Missing Data Technique, Level-2 

Missingness, and Missing Data Mechanism. 

 

 Level-1 Bias. Bias at level-1 was also close to zero (M = -0.008, SD = 0.013, min 

= -0.047, max = 0.0078). Noteworthy amount of variance in level-1 bias was explained 

by the interaction between MDT and level-1 missingness (η2 = .307).  Figure 4.4 shows 

that as level-1 missingness increased, MLMI resulted in bias, with values of -0.0032, -

0.0129, -0.0248, and -0.0399 for 5%, 20%, 40% and 70% missingness, respectively.  

Listwise deletion, however, did not result in bias and was consistently around zero across 
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all levels of level-1 missingness. Even when level-1 missingness was at 70%, listwise 

deletion produced a mean level-1 bias of 0.00008. 

 
Figure 4.4 Distribution of Level-1 Bias by Missing Data Technique and Level-1 

Missingness. 

  

Level-2 Bias. Bias at level-2 was also close to zero (M = 0.004, SD = 0.007, min 

= -0.015, max = 0.036) with noteworthy variance explained by the interaction between 

MDT and level-1 missingness (η2 = .239). Figure 4.5 depicts level-2 bias by this 

interaction and shows that MLMI estimates at level-2 were larger than the estimates for 

the complete data, with values of 0.0029, 0.0073, 0.0128, and 0.0203 for 5%, 20%, 40%, 

and 70%, respectively. Listwise deletion did not seem to produce biased estimates at 

level-2, regardless of the percent of missing data, with a bias value of -0.0001 with 70% 

level-1 missingness. 
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Figure 4.5 Distribution of Level-2 Bias by Missing Data Technique and Level-1 

Missingness. 

 

A very small amount of variance in level-2 bias was explained by the interaction 

between MDT and level-2 missingness (η2 = .008). Figure 4.6 shows the distribution of 

level-2 bias by this interaction. Listwise deletion had very small amounts of variability 

when level-2 missingness was 0; however the variability slightly increased as level-2 

missingness increased. The mean amount of bias across all levels of level-2 missingness 

was zero. For MLMI, bias was 0.0076, 0.0081, 0.0090, and 0.0108, when level-2 

missingness was 0%, 10%, 20%, and 40%, respectively, demonstrating a slight increase 

in values as level-2 missingness increased.  
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Figure 4.6 Distribution of Level-2 Bias by Missing Data Technique and Level-2 

Missingness. 

 

Type I Error Rate 

 Overall Type I Error Rate. Type I error rate was very close or below the .05 

threshold, with an overall Type I error rate of .046 (min = .023, max = .073). Important 

design factors for Type I error rate included level-1 sample size (η2 = .651), level-1 

missingness (η2 = .260), and the interaction between MDT and level-1 missingness (η2 = 

.014). Figure 4.7 shows that as level-1 sample size increased, mean Type I error 

increased, with the mean Type I error of .040, .043, .0452, .0490, and .052 when level-1 

sample size was 20-35, 35-50, 50-65,65-100, and 100-150, respectively. Thus, having a 

level-1 sample size of 100-150 produced an overall Type I error rate above the nominal 

.05 threshold.  
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Figure 4.7 Distribution of Overall Type I Error Rate by Level-1 Sample Size. 

 

As shown in Figure 4.8, as the percent of level-1 missingness increased, Type I 

error rates decreased. For MLMI, the Type I error rate was .050, .049, .047, .046, and 

.044 when level-1 missingness was 0%, 5%, 20%, 40% and 70%, respectively. When 

listwise was used, the mean Type I error rate was .047, .047, .046, .043, and .038 when 

level-1 missingness was 0%, 5%, 20%, 40%, and 70%, respectively. Thus, listwise 

deletion tended to produce Type I error rates more conservative than MLMI, and the 

difference between the two MDTs increased as missingness increased. Across all levels 

of missingness, on average, neither MDT produced Type I error rates above the .05 

nominal threshold level. 
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Figure 4.8 Distribution of Overall Type I Error Rate by Missing Data Technique and 

Level-1 Missingness. 

 

 Level-1 Type I Error Rate. At level-1, the mean Type I error rate was .037 (min 

= .012, max = .060). A noteworthy amount of variability in Type I error rate was 

explained by level-1 sample size (η2 = .661), level-1 missingness (η2 = .261) and the 

interaction between MDT and level-1 missingness (η2 = .014). Figure 4.9 shows that as 

level-1 sample size increased, Type I error rate increased, with mean Type I error rates of 

.025, .032, .037, .043, and .051 when level-1 sample size was 20-35, 35-50, 50-65,65-

100, and 100-150, respectively. Overall, when level-1 sample size was 20-35, Type I 

error rate was very conservative and got closer to the nominal .05 level as level-1 sample 

size increased.  



www.manaraa.com

75 
 

 
Figure 4.9 Distribution in Type I Error Rate by Level-1 Sample Size. 

 

Figure 4.10 depicts the interaction of MDT and level-1 missingness since the 

interaction encompasses the main effect of level-1 missingness. This figure shows that as 

missingness increased at level-1, the Type I error rate for both listwise deletion and 

MLMI also increased. The mean Type I error across all levels of missingness was below 

the a priori established .05 alpha level across all levels of level-1 missingness.  MLMI 

produced a mean of .043, .042, .039, .036, and .031 for level-1 missingness of 0%, 5%, 

20%, 40%, and 70%, respectively. Listwise deletion produced a mean of .043, .042, .039, 

.034, and .024 for level-1 missingness of 0%, 5%, 20%, 40%, and 70%, respectively.  
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Figure 4.10 The Distribution of Level-1 Type I Error Rate by Missing Data Technique 

and Level-1 Missingness. 

 

Level-2 Type I Error Rate. The mean level-2 Type I error rate was .054 (min = 

.020, max = .090) and was also close to the a priori established .05 alpha. The important 

design factors for Type I error rate at level-2 included the three-way interaction between 

level-1 sample size, level-2 sample size, and level-2 missingness (η2 = .078), the three-

way interaction between level-1 sample size, level-2 sample size, and level-1 missingness 

(η2 = .061), the three-way interaction between level-1 sample size, level-1 missingness 

and level-2 missingness (η2 = .054), the three-way interaction between level-2 sample 

size, level-1 missingness, and level-2 missingness (η2 = .050), and MDT (η2 = .028), 

however the overall R-squared was only .488, suggesting that only 48% of the variance in 

Type I error rate at level-2 was explained by the factors in this study, which is small for a 

simulation study. The small R-squared was a result of the lack of variability in Type I 

error rate at level-2.  
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Figure 4.11 depicts the level-1 sample size, level-2 sample size, and level-2 

missingness interaction on Type I error rate at level-2 and Figure 4.12 shows the three-

way interaction of level-1 sample size, level-2 sample size, and level-1 missingness on 

level-2 Type I error rate. Overall, Type I error rates at level-2 were very close to the a 

priori established alpha of .05. 

 
Figure 4.11 The Distribution of Type I Error Rates by the Interaction of Level-1 Sample 

Size, and Level-2 Sample Size, and Level-2 Missingness. 
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Figure 4.12 The Distribution of Level-2 Type I Error Rate by Level-1 Sample Size, 

Level-2 Sample Size, and Level-1 Missingness. 

 

 Figure 4.13 shows the distribution of Level-2 Type I error rate by level-1 sample 

size, level-1 missingness, and level-2 missingness and Figure 4.14 shows the distribution 

of Level-2 Type I error rate by level-2 sample size, level-1 missingness, and level-2 

missingness. Similar to the previous figures, values are close to the nominal value of .05  
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Figure 4.13 The Distribution of Level-2 Type I Error Rate by Level-1 Missingness, 

Level-2 Missingness and Level-1 Sample Size. 
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Figure 4.14 The Distribution of Level-2 Type I Error Rate by Level-2 Sample Size, 

Level-1 Missingness, and Level-2 Missingness.  

 

 

Figure 4.15 shows the distribution of level-2 Type I error rate by MDT. The mean 

Type I error rate at Level-2 was slightly higher than the nominal .05 level, with a mean of 

.056 for the imputed conditions and a value of .052 for listwise deletion. Overall, 

however, they were very close to the nominal .05 level with similar variability.  
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Figure 4.15 The Distribution of Level-2 Type I Error Rate by Missing Data Technique. 

 

 Overall Difference in Type I Error Rate. The average difference in Type I error 

from the complete data was -.002 (min = -.024, max =.018) indicting that the Type I error 

rate for the missing conditions was less than the Type I error rate of the complete cases. 

Important design factors for the difference in Type I error included level-1 missingness 

(η2 = .779) and the interaction between MDT and level-1 missingness (η2 = .043). Figure 

4.16 shows that as level-1 missingness increased, the difference in Type I error rate 

decreased. For MLMI, mean differences were .000, -.001, -.003, -.007, and -.012 when 

level-1 missingness was 0%, 5%, 20%, 40%, and 70%, respectively.  When data were 

listwise deleted, the mean differences in Type I error rates were .000, .000, -.003, -.009, 

and -.018 when level-1 missingness was 0%, 5%, 20%, 40%, and 70%, respectively. 

Listwise deletion provides a difference in Type I error rate similar to or lower than 

MLMI, and the difference between the two increased as level-1 missingness increased. 
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However, since MLMI was closest to the complete case, it seems that MLMI 

outperformed listwise deletion.  

 
Figure 4.16 Distribution of the Difference in Type I Error Rate by Missing Data 

Technique and Level-1 Missingness. 

 

Level-1 Difference in Type I Error Rate. At level-1, the mean difference in 

Type I error rate was -.006 (min = -.027, max =.007). Variability in the difference in 

Type I error rate was explained by level-1 missingness (η2 = .805) and the interaction 

between MDT and level-1 missingness (η2 = .043). Overall, the difference in Type I error 

from the missing case to the complete case was comparable for MLMI and listwise 

deletion until level-1 missingness was 40% or higher (see Figure 4.17). Once missingness 

was 40%, listwise deletion resulted in a further decrease in Type I error rate relative to 

the complete case than MLMI, to a difference as much as -.011 for MLMI and -.018 for 

listwise deletion. 
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Figure 4.17 Distribution of the Level-1 Difference in Type I Error Rate by Missing Data 

Technique and Level-1 Missingness. 

 

Level-2 Difference in Type I Error Rate. At level-2, the mean difference in 

Type I error rate was .001 (min = -.044, max =.036). The important design factor for 

difference in Type I error rate at level-2 included the three-way interaction between level-

1 sample size, level-2 sample size, and level-1 missingness (η2 = .061), the three-way 

interaction between level-2 sample size, level-1 missingness and level-2 missingness (η2 

= .057), the three-way interaction between level-1 sample size, level-1 missingness and 

level-2 missingness (η2 = .051), and MDT (η2 = .034), however the overall R-squared 

was only .488, suggesting that only 48% of the variance in difference in Type I error rate 

at level-2 was explained by the factors in this study, which is small for a simulation 

study. The small R-squared was a result of the lack of variability in differences in Type I 

error rate at level-2.  
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Figure 4.18 shows that Type I error rates at level-2 were similar to the Type I 

error rates of the complete data and were very close to the a priori established alpha of 

.05.  While there are fluctuations in variability and values, no apparent trends seemed to 

exist across the levels of level-1 sample size, level-2 sample size, and level-1 

missingness.  

 
Figure 4.18 The Distribution of the Level-2 Difference in Type I Error Rates by Level-1 

Sample Size, Level-2 Sample Size, and Level-1 Missingness. 

 

Figure 4.19 shows the three-way interaction between level-2 sample size, level-1 

missingness and level-2 missingness. Overall, Type I error rates seem to be similar to the 
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complete case. While there are fluctuations in values and variability across these design 

factors, no apparent trends seem to exist.  

 
Figure 4.19 The Distribution of the Difference in Level-2 Type I Error Rate by Level-2 

Sample Size, Level-1 Missingness, and Level-2 Missingness.  

 

Figure 4.20 shows the three-way interaction between level-1 sample size, level-1 

missingness and level-2 missingness. Similar to the previous two graphs, Type I error 

rates seem to be similar to the complete case. While there are fluctuations in values and 

variability across these design factors, no apparent trends seem to exist.  
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Figure 4.20 The Distribution of the Level-2 Difference in Type I Error Rate by Level-1 

Sample Size, Level-1 Missingness, and Level-2 Missingness. 

 

 

Figure 4.21 shows that while listwise deletion and MLMI had similar variability, 

on average level-2 Type I error rates were slightly higher for MLMI (with an average 

difference in Type I error rate of .003) compared to listwise (which had an average 

difference in Type I error rate of .000) providing evidence that MLMI slightly increases 

Type I error rate over the complete case.  
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Figure 4.21 The Distribution of the Level-2 Difference in Type I Error Rate at Level-2 by 

Missing Data Technique. 

 

Power  

 Overall Power. The mean overall power was .915 (min = .531, max = 1.000). 

Noteworthy amounts of variance were explained by level-2 sample size (η2  = .879), 

level-2 missingness (η2  = .058), MDT (η2  = .019), the interaction between MDT and 

level-2 missingness (η2  = .014), the interaction between level-2 sample size and level-2 

missingness (η2  = .013), and the interaction between MDT and level-2 sample size (η2  = 

.004). Because the interactions encompass all of the main effects, the latter three 

interactions are summarized. 

Figure 4.22 depicts the distribution of power by the interaction between MDT and 

level-2 missingness. As level-2 missingness increased, overall power levels decreased, 

however the magnitude of the decrease depended on the MDT used. Specifically, MLMI 

resulted in power of .939, .932, .927, and .909 when level-2 missingness was 0%, 10%, 
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20%, and 40%, respectively. Regardless of missingness, MLMI resulted in power that 

was always above the nominal level of .80. When listwise deletion was used, power was 

.934, .921, .903, and .851 when level-2 missingness was 0%, 10%, 20%, and 40%, 

respectively. Thus, while overall power did decrease as missingness increased, power 

never fell below the .80 nominal threshold.  

 
Figure 4.22 The Distribution of Overall Power by Missing Data Technique and Level-2 

Missingness. 

 

 Figure 4.23 shows that when level-2 missingness was present, power decreased 

across all level-2 sample sizes. However, power stayed above the .80 threshold when 

level-2 sample size was 35, 50, 65, and 80 despite the level of missingness present. Only 

when level-2 sample size was 20 did power fall below the nominal .80 level, with power 

of .798, .774, .754, and .705 when missingness was 0%, 10%, 20% and 40% respectively.  
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Figure 4.23 Distribution of Overall Power by Level-2 Sample Size and Level-2 

Missingness. 

 

Figure 4.24 shows the distribution of power by the interaction between MDT and 

level-2 sample size. In most cases, when listwise deletion or MLMI was used, power 

values were above the .80 nominal level, with listwise deletion being slightly lower than 

MLMI when sample size was 30 or higher. When level-2 sample size was 20, however, 

both MLMI and listwise deletion were below the nominal level with values of .778 for 

MLMI and .738 for listwise deletion.   
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Figure 4.24 The Distribution of Overall Power by Missing Data Technique and Level-2 

Sample Size. 

  

Level-1 Power. The average value for power at level-1 was .999 (min = .862, 

max = 1.000). For power at level-1, the most important design factors were the 

interaction between level-1 sample size, level-2 sample size, and level-1 missingness (η2  

= .112) and the interaction between MDT, level-2 sample size, and level-1 missingness 

(η2  = .066).  Other design factors of interest are the interaction between level-2 sample 

size, level-1 missingness, and level-2 missingness (η2  = .036), the interaction between 

MDT, level-2 sample size, and level-2 missingness (η2  = .029), and the interaction 

between MDT, level-1 sample size, and level-1 missingness (η2  = .026).  

Figure 4.25 shows that power values at level-1 across all levels of level-1 sample 

size, level-2 sample size, and level-1 missingness were still far above the .80 

recommended threshold.  When level-1 and level-2 sample sizes were small (i.e., level-1 

sample size was 20-35 and 35-50 and level-2 sample size was 20) and level-1 
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missingness was high (i.e., 70%) power did slightly decrease to .960. Thus, level-1 power 

is preserved even when sample size is small and percent of missingness is large.   

 
Figure 4.25 Distribution of the Level-1 Power by Level-1 Sample Size, Level-2 Sample 

Size, and Level-1 Missingness. 

 

Figure 4.26 shows that regardless of MDT, level-2 sample size, and level-1 

missingness, power was higher than the nominal power of .80 with a mean across all 

design factor combination of .999. When level-2 sample size was small (i.e., 20) and 

level-1 missingness was high (i.e., 70%) values for listwise deletion did slightly decrease 

to .976, while MLMI remained at .998. Overall, however, both MDTs performed well.  
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Figure 4.26 Distribution of Level-1 Power by Missing Data Technique, Level-2 Sample 

Size, and Level-1 Missingness. 

 

 Figure 4.27 shows that regardless of level-2 sample size and missingness at both 

levels, level-1 power remained above the .80 nominal level. When level-1 missingness 

was high (i.e., 70%) and level-2 sample size was small (i.e., 20), power slightly decreased 

across all levels of level-2 missingness, however, none of the values fell below .860. 

Overall, power was retained across all levels of these design factors.  
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Figure 4.27 Distribution of Level-1 Power by Level-2 Sample Size, Level-1 Missingness, 

and Level-2 Missingness. 

 

Figure 4.28 shows that both of the MDTs performed well regardless of level-2 

sample size and level-2 missingness. Level-1 power slightly decreased when listwise 

deletion was used, level-2 sample size was small (i.e., 20), and level-2 missingness was 

large (i.e., 40%), however power only fell to .984. Across all combinations of these 

design factors, level-1 power was above the nominal .80 threshold, showing that both 

MDTs performed well.  
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Figure 4.28 Distribution of Level-1 Power by MDT, Level-2 Sample Size, and Level-2 

Missingness. 

 

Lastly, Figure 4.29 shows that both MDTs performed well regardless of level-1 

sample size and level-1 missingness. Power levels remained well above the .80 nominal 

level across all combinations of these design factors. A slight decrease did occur when 

level-1 sample sizes were smaller and level-1 missingness was large, however the 

minimum power value was .984, demonstrating that power was retained across both 

MDTs. 
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Figure 4.29 Distribution of Level-1 Power by Missing Data Technique, Level-1 Sample 

Size, and Level-1 Missingness. 

 

 Level-2 Power. Power at level-2 had a mean of .830 (min = .196, max = 1.000). 

For power at level-2, the most important design factors were level-2 sample size (η2 = 

.884), level-2 missingness (η2 =.058), MDT (η2 =.019), the interaction between MDT and 

level-2 missingness (η2 = .013), and the interaction between level-2 sample size and level-

2 missingness (η2 = .012), the interaction between MDT and level-2 sample size (η2 = 

.003), the three-way interaction between MDT, level-2 sample size, and level-2 
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missingness (η2 = .001). Since the three-way interaction encompasses all of the main 

effects and two-way interactions, only this interaction will be summarized.  

Figure 4.30 depicts the three-way interaction of MDT, level-2 sample size, and 

level-2 missingness. Overall, as missingness increased, level-2 power decreased, and the 

decrease for listwise deletion was generally similar to or more extreme than MLMI. At a 

level-2 sample size of 20, power was below the .80 nominal level, even when there was 

no missingness. As missingness increased, power decreased regardless of which MDT 

was used, however power for listwise deletion was less than the power for MLMI, with 

power of .604, .554, and .497 at 0%, 10%, 20%, and 40% missingness, respectively, and 

power values for listwise deletion of .591, .527, .467, .340 at 0%, 10%, 20%, and 40% 

missingness, respectively.  

When sample size was 35, power was above the .80 threshold when there was no 

missingness, and decreased as missingness increased. MLMI stayed at the .80 threshold 

or above when missingness was 20% or less with power values of .852, .839, .804, and 

.754 when missingness was 0%, 10%, 20%, and 40%, respectively. Listwise deletion 

resulted in power above .80 when missingness was 10% or less with power values of 

.838, .804, .754, and .604 when missingness was 0%, 10%, 20%, and 40%, respectively. 

When level-2 sample size was 50, and MLMI was used, power remained above the .80 

nominal level across all levels of missingness with power values of .950, .942, .930, .896 

at 0%, 10%, 20%, and 40% missingness, respectively. For listwise deletion, power was 

above the .80 nominal level when level-2 missingness was 20% or less, with power 

values of .942, .920, .886, and .775 at 0%, 10%, 20%, and 40% missingness, respectively. 

When level-2 sample size was 65 or higher, power levels across both MDTs and levels of 
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missingness were above the .80 level. When level-2 sample size was 65, power for 

MLMI was .985, .978, .973, and .954 when missingness was 0%, 10%, 20%, and 40%, 

respectively, while power for listwise deletion was .981, .968, .951, and .871 at 0%, 10%, 

20%, and 40%, respectively. Lastly, when level-2 sample size was 80, power for MLMI 

was .995, .994, .990, and .983 at a missingness of 0%, 10%, 20%, and 40%, respectively, 

while power for listwise deletion was .993, .990, .980, and .933 at 0%, 10%, 20%, and 

40% missingness, respectively. 

 
Figure 4.30 Distribution of Level-2 Power by Missing Data Technique, Level-2 Sample 

Size, and Level-2 Missingness. 
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 Difference in Overall Power. The mean difference in power was -.023 (min = -

.266, max = .009). Noteworthy amounts of variance was explained by, level-2 

missingness (η2 = .421), level-2 sample size (η2  = .150), MDT (η2  = .138), the interaction 

between MDT and level-2 missingness (η2  = .098), the interaction between level-2 

sample size and level-2 missingness (η2  = .092), and the interaction between MDT and 

level-2 sample size (η2 = .028). Because the interactions encompass all of the main 

effects, the latter three interactions will be summarized. 

Figure 4.31 shows that listwise deletion and MLMI were both similar to the 

complete case when level-2 missingness was 0%, with a value of .000 for MLMI and a 

value of -.004 for listwise deletion. As the level of missingness increased, both listwise 

deletion and MLMI had less power than the complete case. The difference in power was -

.005, -.011, and -.029 for MLMI at 10%, 20% and 40% level-2 missingness, respectively 

and the difference in power was -.017, -.035, and -.088 for listwise deletion at 10%. 20% 

and 40% level-2 missingness, respectively. However, as stated previously, for the most 

part, overall power was at or above .80 for both MLMI and listwise deletion.  
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Figure 4.31 The Distribution of the Difference in Overall Power by Missing Data 

Technique and Level-2 Missingness. 

 

Figure 4.32 shows that compared to the complete data power decreased as level-2 

missingness increased. However, as level-2 sample size increased, the magnitude of the 

difference in power decreased.  Specifically, when level-2 sample size was 20, power 

decreased by .004, .024, .045, and .094 when level-2 missingness was 0%, 10%, 20%, 

and 40%, respectively. When level-2 sample size was 35, power decreased by .003, .014, 

.033, and .086 when level-2 missingness was 0%, 10%, 20%, and 40%, respectively. 

When level-2 sample size was 50, power decreased by .001, .008, .022, and .057 when 

level-2 missingness was 0%, 10%, 20%, and 40% respectively. When level-2 sample size 

was 65, power decreased by .000, .005, .010, and .035 when level-2 missingness was 0%, 

10%, 20%, and 40%, respectively. Lastly, when sample size was 80, power slightly 

decreased by .000, .002, .005, and .019.  
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Figure 4.32 The Distribution of the Difference in Overall Power by Level-2 Sample Size 

and Level-2 Missingness. 

 

 Figure 4.33 shows that power decreased when level-2 sample size was 20 for both 

MLMI and listwise deletion, however the decrease was more severe when listwise 

deletion was used, where the difference in power was -.021 for MLMI and -.062 for 

listwise deletion. As sample size increased, power levels were more similar to the 

complete case. Specifically, when level-2 sample size was 35, MLMI resulted in a 

decrease of .017 and listwise deletion resulted in a decrease of .052. When level-2 sample 

size was 50, MLMI resulted in a decrease of .005 and listwise deletion resulted in a 

decrease of .03. When sample size was 65, MLMI resulted in a decrease of .005 and 

listwise resulted in a decrease of .020. Lastly, when level-2 sample size was 80, MLMI 

resulted in a decrease in power of .002 and listwise deletion resulted in a decrease in 

.011.  
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Figure 4.33 The Distribution of the Difference in Power by Missing Data Technique and 

Level-2 Sample Size. 

 

Difference in Level-1 Power. The mean difference in power between the missing 

and complete case was close to zero for level-1 (M = 0.000, SD = .006, min = -0.138, 

max = .002). For power at level-1, the most important design factor was the interaction 

between level-1 sample size, level-2 sample size, and level-1 missingness (η2  = .112), the 

interaction between MDT, level-2 sample size, and level-1 missingness (η2  = .066), other 

design factors of interest were the interaction between level-2 sample size, level-1 

missingness, and level-2 missingness (η2  = .036), the interaction between MDT, level-2 

sample size, and level-2 missingness (η2  = .029), and the interaction between MDT, 

level-1 sample size, and level-1 missingness (η2  = .023).  

As expected, there is a decrease in power as missingness increased. Figure 4.34 

shows that level-1 power decreased by as much as .138 when level-1 and level-2 sample 

size were small (i.e., level-1 sample size between 20-35 and level-2 sample size of 20) 
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and level-1 missingness was high (i.e., 70%). However, when level-1 sample size or 

level-2 sample size were large, the percent of missing data at level-1 had no impact on 

level-1 power.  

 
Figure 4.34 Distribution of the Difference in Level-1 Power by Level-1 Sample Size, 

Level-2 Sample Size, and Level-1 Missingness. 

 

Figure 4.35 also shows that power decreased when listwise was used, level-2 

sample size was small, and level-1 missingness was large. Specifically, power decreased 

by -.024, but remained at .000 for every other combination of level-2 sample size. Power 

remained the same for MLMI across all combinations of design factors.  
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Figure 4.35 The Distribution of the Difference in Level-1 Power by Missing Data 

Technique, Level-2 Sample Size, and Level-1 Missingness. 

 

Figure 4.36 shows that level-1 power also did not change drastically from the 

complete case, as the difference in power at level-1 stayed close to zero, especially when 

level-1 and level-2 missingness was small. Power slightly decreased when level-1 and 

level-2 missingness was large and level-2 sample size was small, with a maximum 

decrease of -.027. 
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Figure 4.36 The Distribution of the Difference in Level-1 Power by Level-2 Sample Size 

Level-1 Missingness, Level-2 Missingness. 

 

Figure 4.37 shows that power was similar to the complete case, especially when 

level-2 sample size was 35 and above. When sample size was 20, listwise deletion did 

slightly depart from the complete case, with a difference in power of -.002, -.003, -.005, 

and-.016 when level-2 missingness was 0%, 10%, 20%, and 40%, respectively. The 

average difference across MLMI was .000 across all level-2 sample size and level-2 

missingness combinations.  
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Figure 4.37 The Distribution of the Difference in Level-1 Power by Missing Data 

Technique, Level-2 Sample Size, and Level-2 Missingness. 

 

Additionally, Figure 4.38 shows that while there was a slight difference from the 

complete case to the treated conditions, this only occurred when listwise deletion was 

used and level-1 missingness was 70%, with a difference in power of -.016, -.006, -.002, -

.001, and -.000 when level-1 sample size was 20-35, 35-50, 50-65, 65-100, and 100-150, 

respectively. 
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Figure 4.38 Distribution of the Difference in Level-1 Power by Missing Data Technique, 

Level-1 Sample Size, and Level-1 Missingness. 

 

Difference in Level-2 Power. The mean difference in power between the missing 

and complete case was more pronounced for level-2 (M = .046, SD = .065, min = -.398, 

max = .024). For power at level-2, the most important design factors were level-2 

missingness (η2 =.439), level-2 sample size (η2 = .148), MDT (η2 =.140), the interaction 

between MDT and level-2 missingness (η2 = .098), and the interaction between level-2 

sample size and level-2 missingness (η2 = .093), the interaction between MDT and level-2 

sample size (η2 = .025), and the three-way interaction between MDT, level-2 sample size, 
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and level-2 missingness (η2 = .010). Since the three-way interaction encompasses all of 

the main effects and two-way interactions, only this interaction will be summarized.  

Figure 4.39 shows the distribution of the difference in level-2 power by MDT, 

level-2 sample size and level-2 missingness. This figure shows that the difference 

between the complete case and the treated conditions increases as missingness increased, 

however as sample size becomes larger, the difference almost disappears. When level-2 

sample size was 20, the difference was pronounced across all levels of missingness, with 

a difference in power for MLMI of .000, -.023, -.044, and -.101 at 0%, 10%, 20%, and 

40% missingness, respectively. Listwise deletion at the same sample size produced a 

difference in power of -.013, -.068, -.129, and -.258 at 0%, 10%, 20%, and 40% 

missingness, respectively. However, when level-2 sample size was 80, MLMI produced a 

difference in power of .000, -.002, -.005, and -.013 when missingness was 0%, 10%, 

20%, and 40%, respectively, while listwise deletion produced a difference in power of -

.001, -.002, -.005, and -.013 at 0%, 10%, 20%, and 40% missingness, respectively. 
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Figure 4.39 The Distribution of the Difference in Level-2 Power by Missing Data 

Technique, Level-2 Sample Size, and Level-2 Missingness. 

 

Confidence Interval Coverage 

 Overall Confidence Interval Coverage. The overall mean confidence interval 

coverage (C.I. coverage) was .94 (min = .652 max = 1.00). A considerable amount of 

variance was explained by the interaction between MDT and level-1 missingness (η2 = 

.302), level-1 missingness (η2 = .253), level-1 sample size (η2 = .079), level-2 

missingness (η2 = .063), MDT (η2 = .060), the interaction between MDT and level-2 
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missingness (η2 = .045), the three-way interaction between MDT, level-1 sample size, 

and level-1 missingness (η2 = .032), and the interaction between MDT and level-2 

sample size (η2 = .023). Because the latter three interactions encompass all of the main 

effects and interactions listed formerly, these three will be examined.  

Figure 4.40 depicts the interaction between MDT and level-2 missingness. 

Overall, MLMI resulted in more variability in C.I. coverage values and much lower mean 

C.I. coverage values across all levels of level-2 missingness, with values of .917, .917, 

.916, .912 for 0%, 10%, 20%, and 40% level-2 missingness, respectively.  Listwise 

deletion, however, resulted in higher C.I. coverage values when missingness was 20% or 

below, however values became similar to MLMI values when missingness was 40%, with 

mean C.I. coverage values of .997, .984, .957, and .903 for 0%, 10%, 20%, and 40% 

level-2 missingness.   

 

Figure 4.40 The Distribution of Confidence Interval Coverage by Missing Data 

Technique and Level-2 Missingness.  
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Figure 4.41 depicts the three-way interaction between MDT, level-1 sample size, 

and level-1 missingness. When sample size was 20-35, all C.I. coverage values for 

listwise deletion were above .95. For MLMI at the same sample size range, all C.I. 

coverage values were above .95, except for when missingness was 40% or greater, with 

C.I. coverage values of .939 and .848 when missingness was 40% and 70%, respectively.  

When sample size was 35-50, all values for listwise deletion were above .95. MLMI at 

the same sample size range falls below .95 when missingness was 40% or higher with the 

mean C.I. coverage value of .939 and .797 when missingness was 40% and 70%, 

respectively. When sample size was 50-65, again listwise deletion had C.I. coverage 

values above .95 across all levels of level-1 missingness. MLMI has C.I. coverage values 

above .95 as long as level-1 missingness was less than 40%, with C.I. coverage values 

falling to .838 and .771 with 40% and 70% missingness, respectively. When level-1 

sample size was 65-100, C.I. coverage values for listwise deletion fell slightly below .95 

for 0%-20% levels of missingness, but climbed slightly above .95 for 40% and 70% 

missingness with values of .946, .947, .944, .949, .955, and .959 for 0%, 5%, 20%, 40%, 

and 70% missingness, respectively. Again, at the same sample size level, MLMI had 

acceptable C.I. coverage values until missingness was 40% or higher, with values of .805 

and .716 at 40% and 70% missing data, respectively. Lastly, when level-1 sample size 

was 100-150, listwise deletion was below the .95 level with values of .922, .922, .930, 

.937, and .948 with 0%, 5%, 20% 40%, and 70% missingness, respectively. At the same 

sample size range, MLMI had acceptable C.I. coverage values until missingness was 20% 

or higher with values of .888, .770, and .716 when missingness was 20%, 40%, and 70%, 

respectively. 
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Figure 4.41 The Distribution of Confidence Interval Coverage by Missing Data 

Technique, Level-1 Sample Size, and Level-1 Missingness. 

 

Figure 4.42 shows that listwise deletion stayed stable over level-2 sample size 

with a C.I. coverage value of .958, .962, .960, .961, and .960 when level-2 sample size 

was 20, 35, 50, 65, and 80, respectively. However, MLMI produced C.I. coverage values 

that decreased as level-2 sample size increased with values of .955, .930, .909, .897, and 

.885 when level-2 sample size was 20, 35, 50, 65, and 80, respectively. Thus, listwise 

deletion had acceptable levels across all levels of level-2 sample size whereas MLMI 

produced lower levels when level-2 sample size was 35 or larger.  
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Figure 4.42 The Distribution of Confidence Interval Coverage by Missing Data 

Technique and Level-2 Sample Size. 

 

 Level-1 Confidence Interval Coverage. The mean C.I. coverage for level-1 was 

.807 (min = .000, max = 1.000). Notable amounts of level-1 C.I. coverage variance was 

explained by the interaction of MDT and level-1 missingness (η2 = .310), level-1 

missingness (η2 = .270), MDT (η2 = .136), level-1 sample size (η2 = .055), the three-way 

interaction between MDT, level-1 sample size, and level-1 missingness (η2 = .030), the 

interaction between MDT and level-2 sample size (η2 = .026), level-2 sample size (η2 = 

.024), and the three-way interaction between MDT, level-2 sample size, and level-1 

missingness (η2 = .022). Because the two three-way interactions encompassed all of the 

main effects and second order interactions, they will be summarized in this section.  

Figure 4.43 depicts the three-way interaction between MDT, level-1 sample size, 

and level-1 missingness. This figure shows that when level-1 sample size and level-1 

missingness were small (i.e., level-1 sample size was less than or equal to 35-50 and 

level-1 missingness was less than or equal to 20%), there was virtually no difference in 
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the C.I. coverage between the two MDTs. For listwise deletion, C.I. coverage stayed 

above 95% for all levels of missingness until level-1sample size was 65-100 or higher. 

Even when sample size was 65-100 or larger and missingness was high, C.I. coverage 

remained moderate, with the lowest value for listwise deletion being .847.  

In contrast, MLMI produced estimates with less C.I. coverage, especially as the 

percent of missing data at level-1 increased. When level-1 sample size was 20 to 35, C.I. 

coverage fell to .767 and .443 when level-1 missingness was 40% and 70%, respectively. 

When level-1 sample size was 35 to 50, coverage stayed above 95% until missingness 

increased to 40% and 70% where coverage fell to .543 and .262, respectively. When 

level-1 sample size was 50- 65, coverage stayed above 95% until 20% missingness was 

reached and then fell to .906, .383, .173 coverage for 20%, 40% and 70% missingness, 

respectively. When level-1 sample size exceeded 60-65, coverage was above 95% until 

missingness was 20% and then sharply decreased to as much as .057 (in the case of level-

1 sample size being 100-150 and level-1 missingness at 70%).  

Listwise deletion produced estimates with higher coverage than MLMI when the 

percent of missing data was high at all levels of level-1 sample size. Coverage stayed 

above 95% at all levels of level-1 missingness when level-1 sample size was 20 to 35 and 

35 to 50. When level-1 sample size was larger than 35 to 50, some decrease was seen in 

coverage as missingness increased, however the lowest coverage value was .845, and was 

much larger than MLMI coverage at the same levels.  Thus, while coverage can be low, 

listwise deletion always resulted in similar or higher level-1 C.I. coverage than MLMI. 
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Figure 4.43 The Distribution of Level-1 Confidence Interval Coverage by Missing Data 

Technique, Level-1 Sample Size, and Level-1 Missingness. 

 

Figure 4.44 shows that C.I. coverage for listwise deletion was slightly below .95 

at every combination of MDT, level-2 sample size and level-1 missingness. However, 

C.I. coverage remained relatively high at every combination with a minimum C.I. 

coverage value of .912 and a maximum of .930. Although not as high as desirable, level-

1 C.I. coverage did not seem to be impacted by level-1 missingness and level-2 sample 

size when listwise deletion was used. C.I. coverage was impacted by level-2 sample size 

and level-1 missingness when MLMI was used, where the C.I. coverage decreased as 
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level-1 missingness increased and the severity of the decrease depended on level-2 

sample size.  

Specifically, when level-2 sample size was 20, MLMI C.I. coverage was above 

.95 when level-1 missingness was 20% or below. C.I. coverage values decreased to .760 

and .498 when level-1 missingness was 40% and 70%, respectively. When level-2 sample 

size was 35, C.I. coverage remained above .95 when missingness was 5% below, but 

decreased to .931, .532, and .263 when level-1 missingness was 20%, 40% and 70%, 

respectively.  When level-2 sample size was 50, C.I. coverage was above .95 when 

missingness was 5% or below, and decreased to .851, .370, and .147 with 20%, 40%, and 

70% missingness, respectively. When level-2 sample size was 65, again, C.I. coverage 

was above .95 when missingness was 5% or less, and decreased to .763, .252, and .083 

when level-1 missingness was at 20%, 40%, and 70% respectively.  Lastly, when level-2 

sample size was 80, C.I. coverage remained about .950 when missingness was 5% or less. 

At 20%, 40%, and 70% level-1 missingness, values decreased to .676, .181, and .046, 

respectively.  
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Figure 4.44 Distribution of Level-1 Confidence Interval Coverage by Missing Data 

Technique, Level-2 Sample Size and Level-1 Missingness. 

 

 Level-2 Confidence Interval Coverage. The mean confidence C.I. coverage for 

level-2 was .998. Notable amounts of variance occurred for C.I. coverage at level-2 for 

level-2 missingness (η2 = .201), the interaction between level-2 sample size and level-2 

missingness (η2 = .028), the three-way interaction between level-1 sample size, level-1 

missingness, and level-2 missingness (η2 = .023), level-2 sample size (η2 = .023), and the 

interaction between MDT and level-2 sample size (η2 = .023).  However, the overall R-

squared for this outcome was only .493, which is low for a simulation study. To be 
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thorough, however, the interactions will be explored due to substantive interest in the 

design factors.  

Figure 4.45 depicts level-2 C.I. coverage by level-2 missingness and level-2 

sample size. When sample size was small, C.I. coverage slightly decreased when level-2 

missingness was high, however, all values remained above the .95 threshold. This 

information combined with the overall R-square of the outcome, suggests that there was 

very little variability in level-2 C.I. coverage.  

 
Figure 4.45 Distribution of Confidence Interval Coverage by Level-2 Sample Size and 

Level-2 Missingness. 

 

 Figure 4.46 depicts the three-way interaction between level-1 sample size, level-1 

missingness and level-2 missingness. Overall, there was a slight decrease in level-2 C.I. 

coverage as missingness increased at each sample size level, however all values remained 

above the .95 threshold. This graph also suggests that there was very little variability in 

C.I. coverage values at level-2. 
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Figure 4.46 The Distribution of Level-2 Confidence Interval Coverage by Level-1 

Sample Size, Level-1 Missingness, and Level-2 Missingness. 

 

 Figure 4.47 depicts the interaction between MDT and level-2 missingness. 

Overall there was a slight decrease in level-2 C.I. coverage values as level-2 missingness 

increased. Again, all C.I. coverage values remained above the .95 threshold across all 

combinations of design factor levels. This further shows that there was little variability to 

be explained in level-2 C.I. coverage values.  
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Figure 4.47 The Distribution of Level-2 Confidence Interval Coverage by Missing Data 

Technique and Level-2 Missingness.  

 

Summary 

 

The present study was intended to compare the performance of multilevel 

multiple imputation (MLMI) and listwise deletion in the context of linear two-level 

organizational models with continuous predictors. In this Chapter, I presented graphical 

results accompanied by text for practical and substantive design factors on bias, Type I 

error rate, power and C. I. coverage. Table 4.1 provides the eta-squared values for each of 

the outcomes by level and Table 4.2 provides a summary of the performance of listwise 

deletion and MLMI by each of these outcomes. In the next chapter, I will discuss how 

these results compare to previous literature and provide guidelines and recommendations 

for applied researchers who have missingness with clustered data. 
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Table 4.1. Summary of Factors and Associated η2 Values Covered in Chapter IV. 

Outcome Level η2-1 η2-2 η2-3 η2-4 η2-5 

Bias Overall MDT*L1 Miss = .280 MDT*L1 

Miss*Mechanism =  

< .001 

MDT*L2 

Miss*Mechanism =  

< .001 

  

L1 MDT*L1 Miss = .307     

L2 MDT*L1 Miss = .239 MDT*L2 Miss = .008    

Type I 

Error 

Overall L1 Sample Size = .651 MDT*L1 Miss = .014    

L1 L1 Sample Size = .661 MDT*L1 Miss = .014    

L2 L1 Sample Size*L2 Sample 

Size*L2 Miss 

 = .061 

L1 Sample Size*L1 

Miss*L2 Miss = .054 

L2 Sample Size*L1 

Miss*L2 Miss = .050 

MDT = .028  

Difference 

in Type I 

Error 

Overall MDT*L1 Miss = .043     

L1 MDT and L1 Miss = .043     

L2 L1 Sample Size* L2 Sample 

Size* L1 Miss = .061 

L2 Sample Size* L1 

Miss*L2 Miss = .057 

L1 Sample Size*L1 

Miss*L2 Miss = .051 

MDT = .034  

Power Overall MDT*L2 Miss = .014 L2 Sample Size*L2 Miss 

= .013 

MDT*L2 Sample Size 

= .004 

  

L1 L1 Sample Size*L2 Sample 

Size*L1 Miss = .112 

MDT* L2 Sample Size* 

L1 Miss = .066 

L2 Sample Size*L1 

Miss*L2 Miss = .036 

MDT*L2 Sample 

Size*L2 Miss = 

.029 

MDT* L1 Sample 

Size*L1 Miss = 

026 

L2 MDT*L2 Sample Size*L2 

Miss = .001 

    

Difference 

in Power 

Overall MDT*L2 Miss = .098 L2 Sample Size*L2 Miss 

= .092 

MDT and L2 Sample 

Size = .028 

  

L1 L1 Sample Size*L2 Sample 

Size*L1 Miss = .112 

MDT*L2 Sample Size* 

L1 Miss = .066 

L2 Sample Size*L1 

Miss*L2 Miss = .036 

MDT*L2 Sample 

Size*L2 Miss = 

.029 

MDT*L1 Sample 

Size*L1 Miss = 

.023 

L2 MDT* L2 Sample Size*L2 

Miss = .010 

    

C. I. 

Coverage 

Overall MDT*L2Miss = .045 MDT*L1 Sample Size* 

L1 Miss = .032 

MDT*L2 Sample Size 

= .023 

  

L1 MDT*L1 Sample Size* L1 

Miss = .030 

MDT*L2 Sample Size* 

L1 Miss = .022 

   

L2 L2 Sample Size*L2 Miss = 

.028 

L1 Sample Size*L1 

Miss* L2 Miss = .023 

MDT*L2 Miss = .023   
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Table 4.2. Summary of Missing Data Treatment Results.  

Outcome MDT Performance 

Bias 

Listwise Deletion Performed well at all levels 

MLMI Yielded negative bias at level-1 and positive bias 

at level-2 

Type I 

Error Rate 

Listwise Deletion Yielded conservative Type I error rates as 

missingness increased at level-1; Performed well 

at level-2 

MLMI Yielded conservative Type I error rates at level-1 

as missingness increases, but less than listwise 

deletion; Performed well at level-2  

Power 

Listwise Deletion Performed well at level-1; Performed well at level-

2 but power decreased as missingness increased 

(especially with small sample sizes) but overall 

power was retained as long as level-2 sample size 

was above 35 

MLMI Performed well at level-1; Performed well at 

level-2 but power decrease as missingness 

increased (but less than listwise deletion) but 

overall power was retained  

C.I. 

Coverage 

Listwise Deletion Performed well at all levels 

MLMI YIelded extremely low C.I. coverage as level-1 

sample size and level-1 missingness increased; 

Performed well at level-2 
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CHAPTER V 

Discussion 

 The purpose of this study was to understand the influence of missing data 

technique, missing data mechanism, sample size, and amount of missingness on estimates 

of bias, power, Type I error rates, and confidence interval coverage in the context of 

linear two-level organizational models with continuous predictors. Additionally, one of 

the goals of this research was to be able to provide recommendations for applied 

researchers as to when multilevel multiple imputations (MLMI) and listwise deletion can 

be utilized.  

 This chapter briefly summarizes the results of the previous chapter and relates 

these findings back to previous literature. For findings that contradict previous research, I 

provide hypotheses as to why these differences could have occurred. The first and second 

section of this chapter discusses previous research on bias and power, respectively, as 

well as hypothesized reasons for the results. The third and fourth section summarize the 

findings on Type I error rates and confidence interval coverage along with hypotheses for 

findings. The fifth section uses the results from this study to provide recommendations 

for applied researchers. The sixth and final section addresses study limitations and 

suggestions for future studies. 
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Bias 

 Bias in the context of treating missing data has been well researched in non-

hierarchical data. According to research in this area, bias can result when the wrong MDT 

is used, and the magnitude of bias is influenced by which technique is used, sample size, 

and amount of missingness, and missing data mechanism. Specifically, previous research 

has found that listwise deletion is effective if sample size is large, missingness is small, 

and data are MCAR, whereas imputation procedures are generally effective regardless of 

missing data mechanism, sample size, or missingness (Becker & Powers, 2001; Becker & 

Walstaf, 1990; Rubin, 1987). 

 With hierarchical data, however, previous research has found that bias is not an 

issue when using listwise deletion. In the context of MCAR, listwise deletion was found 

to outperform mean substitution and multiple imputation in the estimation of fixed and 

random effects (Gibson & Olejnik, 2003). Additionally, Kwon (2011) showed listwise 

deletion generally outperformed the other MDTs when data were MAR. He found that 

these methods produced “practically acceptable” bias in most fixed effects that were 

highly related to missingness. Cai (2008) also found that listwise was acceptable under 

MAR, especially when level-2 sample size was small.  This study showed similar 

findings given the context of the study.  

Results of this study showed that the interaction of MDT and level-1 missingness 

was the most important factor when it came to examining overall bias, bias at level-1 and 

bias at level-2. Bias did not seem to be an issue with listwise deletion given the context of 

this study, regardless of mechanism and missingness.  However, bias can be a problem 
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with MLMI. MLMI produced negative overall bias, albeit very small, starting when 

missingness was 20% (-0.003), 40% (-0.006), and 70% (-0.010). Additionally, a 

moderate amount of bias occurred at level-1 when missingness was 20% (-0.0129), 40% 

(-0.0248), and 70% (-0.0399) and a small amount of positive bias was present at level-2 

when missingness was 20% (0.0073), 40% (0.0128), and 70% (0.0203).  

Before researchers can deem listwise deletion as effective at reducing bias, other 

design factors need to be manipulated that could impact bias. First, the gamma value, 

while based on previous literature, did represent a large effect size. Because of this, for 

the non-null missing variables, the effect could have been easier to detect and reproduce 

even when missingness was present. Thus, data simulated to have smaller gamma values 

could result in poor performance from listwise deletion. Second, the ICC could have had 

an impact on bias such that data with smaller ICCs may produce more bias as 

missingness increased (this could be the case with both MLMI and listwise deletion), 

specifically because the smaller the ICC the closer the data gets to having a non-

heirarchical data structure, and thus, should be more similar to results from OLS. Third, 

the lack of bias with listwise deletion could be attributed to having positive bias on one of 

the vaeriables with missing data and negative bias on the second variable. In order to get 

the effect at each level, the two variables containing missingness at that level were 

averaged. Thus, using level-1 as an example, if X1 contained an average bias of -0.05 and 

X2 had an average bias of 0.05, these two effects would cancel each other out and it 

would seem that there was no bias present at the overall level.  

In addition there could be some reasons why MLMI seemed to produce bias (i.e., 

little to no bias in some conditions and a moderate amount in other conditions). Most 
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likely, this is due to model size and the correlations among variables in the model. 

Previous research in OLS regression has determined that as model size increases, the 

more useful imputation procedures become (Enders, 2010; Gibson & Olejnik, 2003), as 

there is more information to explain misingness. Although this model was based on the 

typical number of predictors found in previous research, it is still a small model.  Perhaps 

MLMI would have no bias or have less bias as model size becomes larger. Thus, MLMI 

needs to be further studied with various model sizes.  

Lastly, the correlation among variables is crucial with imputation procedures, 

such that the more highly correlated variables are, the better the imputation procedure 

(Enders, 2010). This study used a moderate correlation (r = .25), and results could be 

different if the variables were more or less highly correlated. 

 Given the amount of emphasis in the missing data literature on missing data 

mechanisms, it was surprising to find that mechanism had no influence on overall bias, 

bias at level-1 or bias at level-2. Specifically, previous research showed that listwise 

deletion should perform well only when data are MCAR. The results of this study 

showed that listwise deletion performed well despite the underlying mechanism of the 

missingness. This could have happened for a couple of reasons. One reason could be that 

perhaps mechanism is not as important with hierarchical data. In addition to this study, 

previous studies have also demonstrated that listwise deletion has been shown to be 

effective with both MAR (Gibson & Olejnik, 2003) and MCAR missingness (Cai, 2008; 

Kwon, 2011). This could be attributed to the hierarchical nesting of the data. For example 

bias at level-1 may not be impacted by mechanism because these level-1 units are nested 

within level-2, thus we have more information to estimate these parameters than we do 
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with OLS regression. Second, it could be that mechanism does impact MLMs, but the 

impact was not detected in this study. Again, this could be because of the large effect size 

of the gamma used during simulation, or the ICC value. Using these as design factors in 

future studies can uncover more information about how listwise deletion impacts bias.  

Power 

 Power has also received a lot of attention in previous literature on non-

hierarchical data. Previous research concluded that listwise deletion can result in 

decreased power, while multiple imputation procedures retain power levels. Specifically, 

listwise deletion seems to result in decreased power when missingness is high and sample 

size is small, regardless of missing data mechanism. However, listwise deletion has been 

shown to retain satisfactory power when sample size is adequate and there is a small 

amount of missingness (Enders, 2010; Kromery & Hines, 1994). Because of this, 

researchers have generally recommended multiple imputation over listwise deletion with 

one of the reasons being that power is not impacted by the missingness when this 

procedure is used. 

 Research on hierarchical data has also been concerned with power. Similar to the 

non-hierarchical case, power has been shown to be an issue as the amount of missingness 

increases (Cai, 2008; Kwon, 2011). Using a deletion method in MLM can result in an 

even more dramatic reduction of the sample size, especially if data are missing at level-2 

as all the corresponding level-1 units will subsequently be deleted. Because of this, 

previous literature has been the most concerned with level-2 missingness and 

disapproving of listwise deletion in MLMs. 
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 This study showed that power decreased for both listwise deletion and MLMI, 

however the decrease for listwise deletion was more pronounced. However, power 

overall was retained above .80 for both MLMI and listwise deletion across most levels of 

missingness, especially when sample size at level-2 was large. While power did decrease 

overall, it was surprising that power for listwise deletion was, for majority of the 

conditions, retained. Overall, data characteristics that have been shown to impact power 

in MLMs are sample sizes, missingness, effect sizes, and ICC values. Notice that only 

two of these characteristics were manipulated in this study. Thus, manipulating the other 

two could produce completely different results. Namely, the gamma value used to 

simulate data, although based on previous literature, did represent a large effect size. Due 

to this, it was not too surprising that power remained high even with listwise deletion. 

Additionally, the ICC in this study was moderate. Data with smaller ICCs could be 

impacted completely different, such that a smaller ICC value could result in listwise 

deletion being less powerful and perhaps falling below the .80 threshold. These variables 

need to be manipulated in future studies in order to further understand the impact of 

listwise deletion on power.  

Type I Error 

 Although less researched in the context of missing data, Type I error rate was 

examined in this study in order to determine if missing data impacted Type I error rates. 

This study showed that level-2 Type I error always remained adequate regardless of 

MDT, while Type I error rate at level-1 become overly conservative as missingness 

increased for both MDTs, but was more conservative for listwise deletion. This finding 

was very unexpected and has not been observed with previous research. I have only one 
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hypothesis about why this could have happened. Since level-1 rates were impacted but 

level-2 rates were not, and the impact was true for both MLMI and listwise deletion, 

perhaps the nested structure of the data caused Type I error rates to become conservative 

when missingness increased. That is, if a level-2 unit is deleted or imputed, all the 

corresponding level-1 units are also deleted or imputed with the same value, and thus 

level-1 can be more impacted by missingness than level-2.   

 More information needs to be collected about the impact of missingness on level-

1 Type I error rate. While there was no evidence that Type I error was inflated, 

researchers should be mindful that Type I error rates could become overly conservative. 

This is important because the Type I error rate can impact power (among other things 

such as ICC and effect size). Specifically, an overly conservative Type I error rate can 

result in a decrease in power.  

Confidence Interval Coverage 

Confidence interval coverage (C. I. coverage) has also received very little 

attention in missing data research. This study found that listwise deletion clearly 

outperformed MLMI in level-1 C. I. coverage, but was adequate for both MDTs at level-

2.  Specifically, C. I. coverage produced from listwise deletion was adequate at both 

levels, yet seemed to decrease as missingness increased, which is not surprising. What 

was surprising, however, is the decrease in level-1 C. I. coverage when MLMI was used, 

especially how the coverage plummeted when sample size or missingness was large.  

The findings observed here could have happened for a couple of reasons. First, 

the introduction of level-1 bias with MLMI could impact level-1 C. I. coverage. For 
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example, bias seemed to be introduced for MLMI (in some cases very little bias and in 

some cases a moderate amount of bias), which could have impacted level-1 C. I. 

coverage. For example, if MLMI produced bias to any extent in the estimates, the 

corresponding confidence interval around that estimate is less likely to contain the 

complete estimate value. For bias, the conditions that caused the most bias were when 

level-1 missingness was high. With C. I. coverage, this was also the case, which could 

provide initial evidence to support this hypothesis (although much more information is 

needed).  

Further, MLMI could be producing low C. I. coverage because the model used did 

not have sufficient information to impute, especially with high missingness. For example, 

take the conditions where we have 70% of the data being imputed. There would need to 

be a lot of information explaining the missingness in the model in order to adequately 

impute the remaining 30% of the data. As stated previously, the model for this study was 

based upon literature, but a small model nonetheless. Previous research has found that the 

more information we have related to missingness, the better imputation methods work. 

Thus, perhaps a larger model with more information would result in adequate C. I. 

coverage, especially in conditions with high amounts of missingness.  

Recommendations & Conclusions 

In 1999 The American Psychological Association Task Force on Statistical 

Inference explicitly warned against the use of traditional MDTs, such as listwise deletion 

as several research studies had shown that the use of traditional MDTs could introduce 

bias into parameter estimates derived from a statistical model (Becker & Powers, 2001; 
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Becker & Wathlstaf, 1990; Rubin, 1987) and could result in a loss of information and 

statistical power (Anderson, Basilevsky, & Hum, 1983; Kim & Curry, 1977) when strict 

assumptions were not met.  

 While the statements from The American Psychological Association Task Force 

on Statistical Inference that explicitly warned against the use of traditional MDTs was 

based upon a plethora of literature suggesting that traditional techniques can cause issues 

with power and bias, it neglected to point researchers to literature that suggests that this is 

not true in all contexts. Previous research has shown that using a traditional method does 

not necessarily reduce statistical power or bias parameter estimates in every context. 

Research using traditional OLS regression techniques has shown that sample size and 

missingness are key characteristics in determining under what conditions each MDT 

should be used. For example, researchers conducting simulation studies using traditional 

OLS regression  have come to the general consensus that pairwise and listwise deletion 

methods work well when sample sizes are large, and the missingness is small (Basilevsky 

et al. 1985; Kim & Curry, 1977; Roth & Swizer, 1995; Witta, 1992). Thus, in certain 

situations traditional methods can be appropriately applied despite the underlying missing 

data mechanism.  

 All of these studies, however, were completed on non-hierarchical data. Since 

multilevel models (MLMs) are an extension of single-level regression, it is plausible that 

results from single-level data extend to hierarchical data. However, these results suggest 

that listwise deletion and MLMI do not perform the same as they do with non-nested 

data. In fact, previous multilevel modeling simulation studies, as well as this study, show 

that the benefits of listwise appear to outweigh the disadvantages. First, based on the 
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results from this study, listwise deletion in MLMs did not introduce bias or inflated Type 

I error rates, and provided adequate C. I. coverage. Second, the procedure is very easy to 

implement and no subjective decisions need to be made prior to implementing the 

procedure. Third, this procedure is widely available in common statistical packages. One 

minor disadvantage of listwise deletion is that power does decrease at level-2. This 

disadvantage is deemed minor, however, because extreme missing data has to be present 

at level-2 in order for power to decrease below the nominal level of .80 based on a large 

effect size and moderate ICC value.  

 The disadvantages of MLMI, at least in the context of this study, appear to 

outweigh the advantages. The first disadvantage of MLMI is that is complicated to use. 

As stated in Chapter 2, several decisions need to be made such as specification of the 

imputation model, deciding how many imputation iterations need to be calculated, which 

algorithm to use, etc. Thus, two researchers could impute the same data set and come up 

with different estimates if they make different decisions during the imputation phase. 

Second, MLMI is not commonly available in most software packages. In addition, there 

are a lot of qualms with researchers about the different packages, what algorithms they 

use, and which levels can be imputed. Thus, software choice can lead two researchers to 

arrive at different conclusions.  

Third, in the context of this study MLMI coverage of the estimated gamma from 

the complete case is equivalent to or worse than listwise deletion. As mentioned above, 

however, there could be some characteristics of this simulation study that impacted this 

that need to be further explored. Fourth, the imputation procedure is only as good as the 

imputation model specified. In this context, I had a correctly specified model due to 



www.manaraa.com

 

132 

 

simulation. However, in real applied research, this is very unlikely. Having large 

imputation models is one way to offset this, however. Lastly, there could be an issue with 

bias in MLMI.  Although more simulation studies are needed to better understand the 

potential impact that different ICC values, model size, and gamma values might have on 

bias, in the context of this simulation study, MLMI introduced bias in parameter 

estimates at both level-1 and level-2. While the bias was not consistent across design 

factors (e.g., for some conditions it was minimal and for others it was moderate), why 

would an applied researcher use a more complicated, potentially biased method over a 

simple non-biased method?  

 Overall, these results show that the blanket statement made by the American 

Psychological Association Task Force on Statistical Inference in 1999 is, perhaps, too 

general. In order to determine what MDT to use, researchers should take a more thorough 

look at missing data literature and simulation studies relevant to the design of their 

analyses instead of simply abandoning traditional techniques altogether. Specifically, in 

the context of linear two-level organizational multilevel models, with the characteristics 

of this study, listwise deletion seems to function rather well, and usually better than 

MLMI.  

 In addition to recommending listwise deletion over MLMI, these results show that 

when considering adequate power at level-2, researchers need to take into consideration 

both level-2 sample size as well as the level-2 missingness. Several sample size 

recommendation have been suggested in the multilevel modeling literature. The most 

common is 30 level-1 and 30 level-2 units (Maas & Hox, 2004; 2005; Pacagnella, 2011). 

However, Bell et al. (2014) have shown this recommendation to produce underpowered 
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analyses and suggests level-1 sample sizes greater than 20-40 and level-2 sample sizes 

greater than 30 to detect significant level-2 effects. This study showed that even with a 

level-2 sample size of 35 and 40% missingness, power fell below the nominal level of .80 

for both MLMI and listwise deletion. When level-2 sample size was 50, 65, and 80, 

power was not an issue. Thus, with level-2 sample sizes in the 30-35 range, researchers 

need to be aware that having missing data could result in less than optimal statistical 

power regardless of MDT.   

Limitations & Future Research 

As with any research study, the generalizability of these results is limited to the 

design factors and facets manipulated in the study. Applied researchers wishing to use the 

guidelines set forth by this study need to be cautious and mindful of how close their 

research scenarios mirror the design and data of this simulation study.  

This study examined a random intercept model with no cross-level interactions, as 

it was determined through examination of previous applied research to be the most 

common type of model. Because of this, results may not generalize to more complex 

models such as the random intercept and slopes model or models with cross-level 

interactions, which could be a good avenue for future research. The ability to estimate 

both fixed and random effects is a major benefit for multilevel models, thus researchers 

need to examine how the rate of non-positive definite G matrices, variance component 

bias, variance component power, and variance component coverage are impacted by 

these design factors.  
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In addition to more complex models with variance components, this study should 

also be extended to multilevel models with dichotomous outcomes. Previous research has 

shown that sample sizes need to be larger in order to have adequate power in models with 

dichotomous outcomes (Schoeneberger, in press). Since listwise deletion does cause a 

decrease in power, although slight in the case of models with continuous outcomes, the 

impact could be greater with multilevel logistic models.  

The examination of model size could also be an avenue of research. Previous 

research has determined that as model size becomes larger, the more useful imputation 

procedures are (Enders, 2010; Gibson & Olejnik, 2003), as there is more information to 

include in the imputation model. In the original design of this study, model size was 

going to be manipulated in order to generally understand the utility of each of the MDT 

as model size increased. However, in order to keep this study informed by the literature, 

as was done with all of the study design factors, this factor was not included in the study 

given that the 39 articles examined when designing the study suggested that on average 

applied researchers typically use smaller models. However, this is still a worthy area for 

future research to examine.  

This study used a specific ICC and gamma value that was identified to be 

representative of applied research. With that said, however, the gamma was quite large 

and the ICC value was moderately large. Little is known about how varying ICC values, 

effect size values, and missingness percentages can impact bias, Type I error, power, and 

C. I. coverage in MLMs. Thus, future studies should incorporate these as design factors 

by manipulating these values and examining if they have an impact on the outcomes used 

in this study.   
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Lastly, in order to examine a large number of design factors, results were 

manipulated such that more than on combination of design factors were aggregated and 

examined by outcome. Thus, within each of the plots in Chapter 4, there are various 

design factor combinations, and the mean across all of these conditions was used to 

evaluate performance. For example, a plot with a main effect of MDT would have a box 

plot for every condition where MLMI was used and every condition where listwise 

deletion was used. Note that within a boxplot, the only necessary common characteristic 

is that the condition used the same MDT. Some of the conditions within this boxplot had 

a level-2 sample size of 20, a level-1 sample size of 20-35, 0% missingness at level-1 and 

level-2 and data missing that was MAR while another had level-2 sample size of 80, 

level-1 sample size of 100-150, 70% missingness at level-1, 40% missingness at level-2, 

and data missing that was MCAR, or any other combination of level-1 and  level-2 

sample sizes, level-1 and level-2 missingness, and mechanism. Thus, the mean represents 

the average value of the outcome across many different related conditions. Note that in 

addition to examining the means, it could also be useful in future research to look at the 

conditions within the boxplot to help get a better sense of how these design factors impact 

each of the outcomes. Additionally, while the method used in this study was chosen such 

that a large amount of design factors could be manipulated in the same study, in order to 

truly assess the performance of each of the design factors, a study where each design 

factor is manipulated one at a time across multiple replications would be needed.    
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APPENDIX A – CODE FOR MCAR DELETION 

/***************************MCAR missingness;*/ 

**Cutoffs for uniform distribution; 

**Level-1; 

*5% missingness; 

%if &l1miss=5 %then %do; %let x1value = .975; %let x2value = .025; 

%end; 

*20% missingness; 

%if &l1miss=20 %then %do; %let x1value = .90; %let x2value = .10; %end; 

*40% missingness; 

%if &l1miss=40 %then %do; %let x1value = .80; %let x2value = .20; %end; 

*70% missingness; 

%if &l1miss=70 %then %do; %let x1value = .65; %let x2value = .35; %end; 

 

**Level-2; 

*10% missingness; 

%if &l2miss=10 %then %do; %let z1value = .95; %let z2value = .05; %end; 

*20% missingness; 

%if &l2miss=20 %then %do; %let z1value = .90; %let z2value = .10; %end; 

*40% missingness; 

%if &l2miss=40 %then %do; %let z1value = .80; %let z2value = .20; %end; 

 

**Level-1; 

%if &l1miss gt 0 %then %do; 

proc sort data=diss15; 

 by condition replicate; 

data MCAR_&cond;  

 set diss15; 

 length miss_type $4; 

 miss_type="MCAR"; 

 by condition replicate; 

 call streaminit(0); 

 Uniform_1=rand("Uniform"); 

  

 if Uniform_1 ge &x1value then x1delete = 1; *~2.5% out of X1; 

 if Uniform_1 le &x2value then x2delete = 1; *~2.5% out of X2; 

 if X1delete = 1 then x1_MCAR = .; 

 if x1delete ne 1 then x1_MCAR = X1; 

 if x2delete = 1 then x2_MCAR =.; 

 if x2delete ne 1 then x2_MCAR = X2; 

 run; 

%end; 

%else %if &l1miss = 0 %then %do; 

data MCAR_&cond; 

set diss15;  

length miss_type $4; 

 miss_type="MCAR"; 

 x1_MCAR = x1; 

 x2_MCAR = x2;
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 run; 

 %end; 

 

**Level-2; 

%if &l2miss gt 0 %then %do; 

proc sort data = MCAR_&cond; 

by replicate l2_id; 

run; 

proc means data = MCAR_&cond noprint; 

class replicate l2_id; 

var z3 z1 z2; output out=MCAR_comp mean(z3)=z3 mean(z1)=z1 mean(z2)=z2; 

run; 

 

proc sort data = MCAR_comp; by replicate; run; 

data MCAR_comp; set MCAR_comp; 

if l2_id =. or replicate = . then delete; 

by replicate; 

call streaminit(0); 

Uniform_2 = rand("Uniform"); 

if Uniform_2 ge &z1value then z1delete = 1;  

if Uniform_2 le &z2value then z2delete = 1;  

if Z1delete = 1 then z1_MCAR = .; 

if Z1delete ne 1 then z1_MCAR = Z1; 

if Z2delete = 1 then z2_MCAR = .; 

if Z2delete ne 1 then z2_MCAR = Z2; 

run; 

 

data MCAR_&cond; merge MCAR_&cond MCAR_comp(keep = replicate l2_id 

z1delete z2delete z1_MCAR z2_MCAR); 

by replicate l2_id;  

run; 

%end; 

%else %if &l2miss = 0 %then %do; 

data MCAR_&cond; set MCAR_&cond; 

z1_MCAR = z1; 

z2_MCAR = z2; 

run; 

%end; 
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APPENDIX B – CODE FOR MAR DELETION 

******************************MAR missingness; 

data diss15_MAR;  

 set diss15; 

 length miss_type $4; 

 miss_type="MAR"; 

 run;  

 

*****************MAR at level-1; 

%if &l1miss gt 0 %then %do; 

*restricting upper limit to 50%; 

proc means data = diss15_mar noprint; 

class replicate; 

var x3; output out = lev1_comp p50=p_50z; 

run; 

data lev1_comp; set lev1_comp; 

if replicate =. then delete; 

drop _Type_ _freq_; 

run; 

proc sql; 

create table lev1_comp2 as 

select a.*, b.p_50z 

from diss15_MAR a left join lev1_comp b 

on a.replicate=b.replicate; 

quit; 

data lev1_comp3; 

set lev1_comp2; 

xx1=x1; if x3>p_50z then x1_0=0; else x1_0=1; 

xx2=x2; 

run; 

**Creating datafile with sample sizes; 

proc sql; 

create table N1size as 

select avg(replicate) as replicate2, 

round((count(l1_id))*((&l1miss/100)/2)) as _Nsize_ 

from diss15_mar 

group by replicate; 

quit; 

 

*datafile must have the same variable as in strata line of proc 

surveyselect so renaming; 

data rn1size; 

set N1size; 

rename replicate2=replicate; 

run; 

 

**selecting X1 for deletion; 

proc surveyselect noprint data=lev1_comp3 sampsize=rN1size method=pps 

out=l1x1select; 
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size x1_0;  

strata replicate; run; 

 

data lev1_comp4; 

set lev1_comp2; 

xx1=x1; 

xx2=x2; if x3<p_50z then x2_0=0; else x2_0=1; 

run; 

**selecting x2 for deletion; 

proc surveyselect noprint data=lev1_comp4 sampsize=rN1size method=pps 

out=l1x2select;  

size x2_0;  

strata replicate; run; 

 

**Combining datasets; 

data l1x1select2; set l1x1select; xx1 =.; k1=0; keep k1 replicate l1_id 

l2_id xx1 xx2;run; 

 

data l1x2select2; set l1x2select; xx2 =.; k2=0; keep k2 replicate l1_id 

l2_id xx1 xx2; run; 

 

proc sort data = l1x1select2; by replicate l2_id l1_id; 

proc sort data = l1x2select2; by replicate l2_id l1_id; 

proc sort data = lev1_comp3; by replicate l2_id l1_id; run; 

 

**Complete level-1 data set with missingness; 

data lev1missing; merge l1x1select2 l1x2select2 lev1_comp3; by 

replicate l2_id l1_id; run; 

 

 

**Merging in level-2 data with complete set of generated data; 

data level1data; merge diss15_MAR lev1missing(keep = replicate l1_id 

l2_id k1 k2 xx1 xx2); 

by replicate l2_id l1_id;  

if k1 = . then k1=1; 

if k2 = . then k2=1; 

if k1 = 0 then xx1 = .; 

if k2 = 0 then xx2 = .; 

run; 

%end; 

 

%else %if &l1miss = 0 %then %do; 

data level1data; set diss15_MAR; 

xx1 = x1; 

xx2= x2; 

run; 

%end; 

 

%if &l2miss gt 0 %then %do; 

**********************MAR at level-2; 

proc sort data = diss15_MAR; 

by replicate l2_id; 

run; 

proc means data = diss15_MAR noprint; 

class replicate l2_id; 

var z3 z1 z2; output out=b_comp mean(z3)=z3 mean(z1)=z1 mean(z2)=z2; 

run; 
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data b_comp; set b_comp; 

do i = 1 to &reps;  

if replicate = i then t = i; end; 

if l2_id =. or replicate = . then delete; run; 

 

*restricting upper limit to 50%; 

proc means data = b_comp noprint; 

class replicate; 

var z3; output out = b1_comp p50=p_50z; 

run; 

 

data b1_comp; set b1_comp; 

if replicate = . then delete; 

run;  

 

data b2_comp; set b1_comp; 

do i = 1 to &reps;  

if replicate = i then t = i; end; 

run; 

data b3_comp; merge b_comp b2_comp; 

by t; drop i _type_ _freq_; run; 

 

data m1; 

set b3_comp; 

zz1=z1; if z3>p_50z then z0=0; else z0=1; 

zz2=z2; 

run; 

 

proc surveyselect noprint data=m1 sampsize=%SYSEVALF(&n2*((&l2miss / 

100)/2),integer) method=pps out=m3;  

size z0;  

strata replicate; run; 

 

data m2; 

set b3_comp; 

zz1=z1; 

zz2=z2; if z3<p_50z then z0=0; else z0=1; 

run; 

**selecting Z2 for deletion; 

proc surveyselect noprint data=m2 sampsize=%SYSEVALF(&n2*((&l2miss / 

100)/2),integer) method=pps out=m4;  

strata replicate;  

size z0;  

run; 

 

**Combining datasets; 

data m5; set m3; zz1 =.; v1=0; keep v1 replicate l2_id zz1 zz2; 

run; 

 

data m6; set m4; zz2 =.; v2=0; keep v2 replicate l2_id zz1 zz2; run; 

 

proc sort data = m5; by replicate l2_id; 

proc sort data = m6; by replicate l2_id; 

proc sort data = m1; by replicate l2_id; run; 

 

**Complete level-2 data set with missingness; 
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data m7; merge m1 m5 m6; by replicate l2_id; run; 

proc sort data = level1data; by replicate l2_id; run; 

 

**Merging in level-2 data with complete set of generated data; 

data Mar_&cond; merge level1data m7(keep = replicate l2_id v1 v2 zz1 

zz2); 

by replicate l2_id;  

if v1 = . then v1=1; 

if v2 = . then v2=1; 

rename  

xx1 = x1_MAR 

xx2 = x2_MAR 

zz1 = z1_MAR 

zz2 = z2_MAR; 

run; 

%end; 

 

%else %if &l2miss = 0 %then %do; 

data MAR_&cond; set level1data; 

rename  

xx1 = x1_MAR 

xx2 = x2_MAR; 

z1_MAR = z1; 

z2_MAR = z2; 

run; 

%end; 
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APPENDIX C – EXAMPLE MPLUS INPUT FILE 

TITLE: This is an example of imputing a multilevel model in MPLUS. Mechanism = MCAR 
           condition = 162 rep = 376 
DATA:      FILE = impMCAR162_376.dat; 
VARIABLE:  NAMES are rep cond l1_id l2_id x1_MCAR x2_MCAR x3 x4 z1_MCAR z2_MCAR z3 y1; 
           USEVARIABLES are x1_MCAR x2_MCAR x3 x4 z1_MCAR z2_MCAR z3 y1; 
           cluster = l2_id; 
           between = z1_MCAR z2_MCAR z3; 
           within = x1_MCAR x2_MCAR x3 x4; 
           missing = ALL .; 
           IDVARIABLE = l1_id; 
ANALYSIS: Type= TWOLEVEL BASIC; 
DATA IMPUTATION: 
           IMPUTE = x1_MCAR x2_MCAR z1_MCAR z2_MCAR; 
           NDATASETS=20; 
           SAVE = I:\Dissertation\MCAR IMPUTE\impMCAR162_376_*.dat; 
           thin = 500; 
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